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Introduction and Motivation

e There is an ongoing need to monitor the operation of existing nuclear reactors and detect
undeclared reactors, safeguard nuclear material including spent fuel, and detect nuclear tests.

e Technologies are sought that can complement the existing methods: increase sensitivity, improve
confidence, resolve ambiguities.

e Antineutrino detection has been identified as a promising method for proliferation measurements.
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Methods for antineutrino detection

Coherent elastic neutrino-
nucleus scatting (CEVNS)
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e 1.8-MeV energy threshold * N? energy th.reshold * No energy threshold

e Technologically mature * Highly directional  The greatest cross section of

e Flavor sensitive * Low cross section all neutrino-matter couplings
e Susceptible to backgrounds e Flavor blind
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Mission Relevance

Detection and monitoring of plutonium production
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Monitoring of spent fuel
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CEVNS detection
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Neutron number (N) e CEVNS was detected for the first time in 2017 in
E, 2 an accelerator experiment at the ORNL Spallation
o~ 0.4 x107*N? (Me\/) cm” Neutron Source
e Detection medium: ~15 kg of Csl(Na)
E \2 L. .
(B,) = 2 (MeV) e Powerful background determination due to time
" 3 A structure of accelerator signal

e Such time structure is not available for relevant
nonproliferation use cases
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Noble element detection
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Past results

Detector construction, operation, Electron ionization yield in LAr <1 keV  Nuclear ionization yield in LAr at 6.7 keV
and simulation
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Technical Work Plan

* Over the 5-year period, this project will help to advance the
noble element detector technology towards CEVNS
demonstration at a nuclear reactor

* Major tasks:

* Explore the reduction of background by complete Existing LAr detector testbed at LLNL
electron extraction from LXe
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* Measure and maximize the electron extraction efficiency
from LAr
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* Measure the LAr and LXe ionization yield at low energies f
consistent with reactor antineutrino CEVNS 04 ¥ l-Xuetal,
. . g arXiv:1904.02885
* Explore an opportunity to deploy a demonstration 0 13 [physics.ins-det]
experiment within the Advanced Instrumentation Testbed [ J
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Expected Impact

Reduction of detector mass for Monitoring of spent fuel using
reactor monitoring applications antineutrinos

Fundamental science

e Reduction of detector mass/ e Ability to monitor spent e Neutrino transport in neutron
volume by 2-3 orders of nuclear fuel over a longer stars and in stellar collapse
magnitude period as the antineutrino e Determination of background

e Compact deployment within spectrum softens for WIMP searches

the plant perimeter
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MTV Impact

e MTV provides a framework and support
for collaboration with the Rare Event
Detection Group at Lawrence Livermore
National Laboratory

e Acceleration of advanced noble element
R&D at national laboratories

e Support for participation in key technical
meetings (Applied Antineutrino 'yl nd
Workshop, IEEE Nuclear Science Example of recent personnel impact:
Symposium, SORMA)

e Student transition into national
laboratory careers

Michael Foxe
Past PhD working on CEVNS using LAr

Current position: staff scientist at PNNL
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Conclusion

* CEVNS is a method for neutrino detection that could contribute to
nuclear safeguards, including reactor and spent fuel monitoring

* CEVNS has yet to be demonstrated using reactor antineutrinos

* CEVNS has the largest cross section, but significant R&D is needed to
evaluate its performance when compared to inverse beta decay

* This research will leverage synergistic LLNL initiatives and prior
collaborations on argon-based dual-phase detection

* There is a path to integrate future demonstrations with the Advanced
Instrumentation Testbed
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