CEvNS for Nuclear Security

MTV Workshop, 2020

03-10-2020

M. Bowen, P. Huber
U. Michigan, Virginia Tech
Introduction and Motivation

• Coherent Elastic Neutrino Nucleus Scattering (CEvNS) is the new kid on the block, first measured in 2017.

• Large cross section (for neutrinos), threshold-less reaction.

• Handheld neutrino detectors?
Mission Relevance

• Small (sub-ton) neutrino detectors would greatly enhance the deployment options for reactor monitoring

• Detection of neutrinos below inverse beta decay (IBD) threshold would enhance the ability to detect reprocessing waste and plutonium breeding (Cogswell, PH, 2016)

\[^{238}\text{U} + n \rightarrow ^{239}\text{U} \xrightarrow{\beta^-} ^{239}\text{Np} \xrightarrow{\beta^-} ^{239}\text{Pu} \]

Emits neutrinos of 1.2 MeV – invisible to IBD detectors
Technical Approach

• Comparison with demonstrated capabilities of IBD detectors
• Use PROSPECT as benchmark
• LLNL is heavily involved in PROSPECT (co-spokesperson)
• ORNL is host to PROSPECT and COHERENT
• Major contributions by VT NSF REU student Maitland Bowen (U. Michigan)
20+ international neutrino detection experts came together to assess how current IBD technology could be used in a future nuclear agreement.

(Carr et al., 2018)
Reactor status

• Is the reactor running?
• Use PROSPECT performance as benchmark
• Includes measured backgrounds

<table>
<thead>
<tr>
<th>5MWe</th>
<th>IR40</th>
<th>ELWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2d</td>
<td>8 h</td>
<td>1.5 h</td>
</tr>
</tbody>
</table>

Time to detection at 95% C.L.
Reactor fissile inventory

• Has a high-Pu content core been swapped against a fresh one?

<table>
<thead>
<tr>
<th>BG level</th>
<th>ELWR</th>
<th>IR40</th>
<th>5MWe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>134</td>
<td>109</td>
<td>1154</td>
</tr>
<tr>
<td>0.5</td>
<td>83</td>
<td>59</td>
<td>830</td>
</tr>
<tr>
<td>0.2</td>
<td>56</td>
<td>30</td>
<td>637</td>
</tr>
<tr>
<td>0</td>
<td>45</td>
<td>16</td>
<td>527</td>
</tr>
</tbody>
</table>

Days to detection at 95% C.L.

• Requires 6 times the detector mass of PROSPECT (12t)
CEvNS

CEvNS is threshold-less

\[\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} N^2 M_N \left(1 - \frac{M_N T}{2E^2_N} \right) \]

\(T \) recoil energy, \(N \) neutron number

Threshold in eV for parity in event rate per unit mass with IBD

\[
\begin{array}{cccccccc}
{^{12}}C & {^{20}}Ne & {^{28}}Si & {^{40}}Ar & {^{74}}Ge & {^{127}}I & {^{132}}Xe & {^{133}}Cs \\
790 & 770 & 702 & 672 & 491 & 353 & 347 & 343 \\
\end{array}
\]
CEvNS energy spectrum

- Different fissile produces a different neutrino spectrum
- Difference persists in detection

![CEvNS energy spectrum graph](image)
Mass advantage

• Even at 5eV threshold:
 0.6t Xe for core swap
 50kg Xe for reactor power

• Assumes zero background
CEvNS background

• CEvNS at reactor yet to be observed
• Educated guess as to BG shape
• Magnitude still unknown
CEvNS with BG

- 1/E background worst case, but not unlikely
- Already for B=5S, no advantage relative to IBD
Conclusion & next steps

• CEvNS at reactors needs to be demonstrated
• Significant R&D needed to match IBD capabilities
• No handheld neutrino detectors soon!
• Evaluation of the current global detector R&D program vis a vis nuclear security applications:
 Are we looking at the right technologies?
The Consortium for Monitoring, Technology, and Verification would like to thank the NNSA and DOE for the continued support of these research activities.

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920 and by the National Science Foundation under award number 1757087.