MTV Student Virtual Research Symposium

Validating Organic Scintillator Rossi-alpha Measurements of Fast Metal Assemblies using Simulations

10 June 2020

Caiser Bravo University of Michigan, NERS Undergraduate Senior PI: Sara Pozzi Mentor: Michael Hua

Introduction and Motivation

- k_{eff} describes the neutron multiplication within a system; intergenerational ratio.
- Rossi-alpha measurements estimate the prompt neutron decay constant, α , to infer k_{eff}, which cannot be measured directly.
- Previous work has shown that ³He-gas proportional counter-based detection systems (tens of microseconds) are insensitive to α^{-1} of fast assemblies (tens of nanoseconds).
- Faster detection systems based on organic scintillators are of interest to augment the current Rossi-alpha toolbox.

Nuclear fission chain; neutron multiplying system

We validate organic scintillator-based Rossi-alpha measurements of fast assemblies by comparing measurement to two different, independent simulations.

cbravo@umich.edu

Mission Relevance

- Measurements of reactivity, ρ , or the keffective multiplication factor, k_{eff} , of SNM assemblies are crucial to nuclear nonproliferation, safeguards, and criticality safety.
- Criticality safety monitoring uses k_{eff} to prevent accidents.
 - Louis Slotin criticality accident

Louis Slotin separating plutonium hemispheres with a screwdriver

Rossi-alpha

- Obtain and histogram time differences between all neutron detections.
- Prompt neutron decay constant, α, determined from fit of time-difference histogram.

$$\rho = \frac{k_{\rm eff} - 1}{k_{\rm eff}} = \beta_{\rm eff} - \alpha \Lambda$$

• Effective delayed neutron fraction, β_{eff} , and mean neutron lifetime, Λ , are typically determined through simulation.

Organic Scintillators

- Organic scintillators capable of detecting both fast neutron and gamma rays have become popularized.
- They are scatter-based recoil detectors sensitive to fast neutrons without moderation and have:
 - Observable neutron energy range from 0.5 MeV to 5.5 MeV
 - Nanosecond timing capabilities
 - Pulse-shape discrimination (PSD) implemented to separate neutron events

Trans-stilbene crystal and ET 9214B PMT couple.

Measurement and Analysis

- 4.5 kg of alpha-phase, beryllium reflected weapons-grade plutonium (BeRP ball) in five different reflector configurations:
 - Bare
 - 7.62 cm Iron
 - 7.62 cm Copper
 - 7.62 cm Tungsten
 - 7.62 cm Nickel
- Measurements performed at National Criticality Experiments Research Center at the Device Assembly Facility.
- Two 12 trans-stilbene scintillator arrays and two NoMAD detectors.

Process of independently simulating and comparing time-bin tail-fit and KCODE

Experimental and Simulation Setups

(Left) Experimental setup of 12 *trans*-stilbene detectors measuring the BeRP ball in five different reflectors for 30 minutes and (Right) MCNP model representative of all scenarios used to obtain two true/known values: an α value and a k_{eff} value.

Results

- Given as inverse alpha, α^{-1} , to compare units of time.
- Measured and simulated confidence intervals overlap as:
 - 1 σ : iron, copper, and tungsten cases
 - 1.02 σ: nickel case
 - 1.31 σ: bare case
- Overall, good agreement between α_{meas}^{-1} and α_{sim}^{-1}
- The measured value of α , KOPTS simulated values of β_{eff} and Λ are then used to estimate a measured value of $k_{eff,meas}$.

Comparison of time-bin tail-fit α_{meas}^{-1} and α_{sim}^{-1}

Results

- MCNP's KCODE criticality source card option was used to calculate k_{eff,sim} and obtain uncertainty.
- The $k_{eff,meas}$ and the $k_{eff,sim}$ from KCODE simulations are compared.
- Measured estimates of k_{eff} are less than simulation calculated k_{eff} except for iron.
- Error and uncertainty in $k_{eff,meas}$ increases as $k_{eff,sim}$ decreases.
 - As expected, since the point kinetics model assumes k_{eff}≈1, and thus performs worse for more subcritical systems.

Comparison of KCODE $k_{eff,sim}$ and α with KOPTS $k_{eff,meas}$

Expected Impact

- If successful, this work will contribute to the phasing out of slower detections systems in favor for fast systems such as organic scintillators.
- Validation of the two exponential model opens the door to explore:
 - Various shielded and reflected assembly configurations.
 - Increasingly smaller masses to counter smuggling of SNM

Conclusion

- Performed analysis with the two-exponential Rossi-alpha model and found good agreement between measured and simulated values of α
- This work shows that organic scintillator-based systems are sensitive to fast assemblies.
- Organic scintillators should replace ³He in fast metal applications.
- The two-exponential model adequately describes physical phenomenon using two region point kinetics.

Next Steps

- Validating the model for both ³He-based and organic scintillator-based systems for general reflectors.
- Comparison of ³He-based and organic scintillator-based detection systems in time-correlated, microscopic neutron noise methods.

12

MTV Impact

- Funded my work across several projects
- Provided the opportunity to be a summer fellow
- Connected me with LANL for an internship
- Allowed me to follow the development of organic scintillator capabilities at NCERC

13

Acknowledgements

Massachusetts Institute of					
Te	ech	no	log	IУ	

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920

