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Abstract:
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learning feature selection. Second, utilizing mechanistic knowledge to pre-select features of
interest in metagenomics data. Finally, developing general approaches to combine machine o
learning with genome-scale metabolic models to predict microbial phenotypes from I
genotypes. An effective integration of mechanistic modeling/knowledge with machine learning 2 Metagenomics CO n C u s I O n
could ultimately lead to improved prediction accuracy, particularly when data is sparse. ’ o . . .
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the detection of environmental o Explore the sensitivity of our results to different
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