

luSec

Consortium for Monitoring, Technology, and Verification

Science and Technology Facilities Council

Autonomous Sensing and Information Gathering

John W. Fisher III

Massachusetts Institute of Technology

UK-US Academic Network in Nuclear Security and Nonproliferation Skills Virtual Workshop

<John W. Fisher III, fisher@csail.mit.edu>

Data Fusion, Information Gathering, Uncertainty Quantification and Risk

- Multiple sensing modalities provide complementary information of the environment, but...
 - modeling complexity, computational resources, multi-physics relations, etc.
- Structured probabilistic models provide a consistent mathematical representation for data fusion (inference), uncertainty quantification, and risk.
- Bayesian optimal experiment design (BOED) is a natural framework for managing uncertainty, risk, and resource expenditures

Sequential Bayesian Optimal Experiment Design

Sequential Bayesian Optimal Experiment Design

Iteratively select *informative designs*

- Design: Value of information (Vol) analysis
- Execute: Collect sensor measurements
- Infer: Update beliefs/understanding

Source Localization with Complex Transport

Goal: detect an *unknown number* of sources via airborne sensors

Challenges:

- Complex transport phenomenon
- Very low SNR
- Uncertain nuisance parameters matter

- **Technical Approach:** PGM that combines computationally efficient propagation models, flexible source models, and BNP background models
- RJMCC inference for uncertainty in the *number* of sources
- Gaussian process background model (*irregular spatial sampling*)
- CPAB for stochastic transport from noisy wind measurements
- Information-driven multi-flight flight planning

Probabilistic Graphical Model Representation

(Unknown!) η_z η_z w_k η_w w_k η_w w_k η_s w_k

\mathbf{Symbol}	Definitions
z_k	2D mean location of source k
w_k	Location std. dev. ("width") of source k
s_{kj}	Emission rate of source k in flight j
t_{ji}	Time of the i -th measurement in flight j
x_{ji}	Location of the i -th measurement in flight j
y_{ji}	Value of the i -th measurement in flight j
U_j	Wind field data for flight j
b_j	Background contributions to measured \boldsymbol{y}_{i}
σ_{j}	Sensor noise std. dev. in flight j

Expected Emission Rate

Expected Source Emissions Originating in Area \mathcal{A} :

$$f(\boldsymbol{\theta}; \boldsymbol{\mathcal{A}}) = \sum_{k} s_{kj} \int_{\boldsymbol{\mathcal{A}}} \mathcal{N}(z; z_k, \mathbf{I} w_k^2) \, \mathrm{d}z$$

Bayesian Experimental Design with Variable Cost

Sue Zheng, Jason Pacheco, John W. Fisher III

Bayesian Experimental Design

Unknown $X \sim p(x)$, Outcome $Y \sim p_a(y \mid x)$

• Experimental Design:

 $a^* = \operatorname{argmax}_a I_a(X; Y) D_t$

- Execute: Collect observations, Y = y
- Infer: Update beliefs

 $p(x | D_t)$ where $D_t = \{a_{\tau}, y_{\tau}\}_{\tau=1}^t$

Challenges to BED

- Mutual Information $I_a(X; Y|D_t)$ is intractable
- Exacerbated by number of designs
- No known unbiased estimator

Either upper bound $\mathbb{E}[\hat{u}] \ge I$, or lower bound $\mathbb{E}[\hat{l}] \le I$

Adaptive Allocation of Resources

Upper **and** lower bounds at little additional cost gives guarantee relative to optimal

 $I_a - I^* \ge l_a - \max_{a' \in \mathcal{A} \setminus a} u_{a'} \coloneqq g_a$

Allocate computation to promising designs

Trade computation for performance

$$\hat{l} = \frac{1}{N} \sum_{n=1}^{N} \log \frac{p(y_n \mid x_n)}{\frac{1}{N} \sum_{m=1}^{N} p(y_n \mid x_m)} \qquad \qquad \hat{u} = \frac{1}{N} \sum_{n=1}^{N} \log \frac{p(y_n \mid x_n)}{\frac{1}{N-1} \sum_{m\neq n} p(y_n \mid x_m)}$$

Cost-Aware BED with Iterative Refinement

- Two-sided bounds
 - Provide guarantee relative to optimal
 - Focus computation
 - Trade off performance/computation
- Iterative Approach
 - Loosely bound all
 - Select high marginal utility, mu cost-sensitive allocation $= \frac{\Delta_a g^*}{c_a}$ \longrightarrow Update to *highest* guarantee Bound evaluation, sampling

Iterative Refinement of Bounds

Conclusion and Next Steps

BOED and Information Gathering

- Two-sided bounds give performance guarantees
 - Iterative approach minimizes computation
 - Knapsack-based procedure gives additional computational savings
- Trade off computational resources with performance guarantee
- Integration probabilistic machine learning with human domain expertise within BOED

Items I did not discuss

- Vol-based design of *macro-actions* with *performance guarantees*
- Integration of deep learning with *interpretable* probabilistic transformations for data fusion

Expected Current Impact

Existing Projects

- BOED for design oof lead-perovskite solar cells
- Well routing and gas-lift optimization for management offshore petroleum infrastructure
- Detection of biota response to radiological exposure (national lab collaboration)
- Sensor array design for detection of SNM *without* reconstruction
- Detection of undersea volcanic plumes
- Your problems?