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Extracting Information 
from Remote Sensing
On the right is a map of part of 
Beijing stitched together from many 
satellite images.

Can we predict details atmospheric 
properties?
If so, we could:
• Identify hot-spots for potential 

mitigation
• Link to epidemiological 

quantities (e.g., asthma, 
neuropsychiatric disorders, 
stress-pollutant interactions)



Predicting from 3m Microsatellite Data

Zheng et al, Atmospheric Environment 2020



Can we find unusual local areas?



Zheng et al, Remote Sensing 2021



When are the data trustworthy?
• Understanding the uncertainty in 

predictions will maximize utility
• Deep learning methods do not provide 

uncertainties out-of-the-box
• Our proposal: make two networks work 

together to capture uncertainty



Approximating Quantile Regression
Suppose we have input feature 𝑋 ∈ ℝ! with an 
associated outcome Y ∈ ℝ and define the 𝑞"#
conditional quantile as 𝑦$,&.

We can define the full distribution/uncertainty by the 
conditional CDF and inverse CDF, which we will 
approximate with neural networks:

𝑔' 𝑦$,( , 𝑋 ≃ 𝑝 𝑦$,& < 𝑌 𝑋 = 𝑞
𝑓) 𝑋, 𝑞 ≃ 𝑦$,(



Pairing Two Networks
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COLLABORATING NETWORKS

(a) f -network. (b) Training scheme. (c) Quantile Estimation.

Figure 1: Illustration of CN framework. 1(a) describes training for a conditional quantile ŷ(x, q)
directly as the objective function to ensure calibration. However, the dashed arrow implies
that the objective function does not produce a useful gradient. 1(b) gives the g-network,
which helps with the non-derivative objective function in Eq. (2). In this framework, g and
f are jointly trained to learn the CDF and conditional CDF, and they are connected by
Eq. (1). 1(c) gives the final mapping to generate the conditional quantiles after the network
has been trained.

4. Joint Function Learning

A good conditional quantile function f should have the following property to generate well-calibrated
quantile estimates.

Ep(Y |X)[Y < f(X, q)] ⇡ q. (2)

At first glance, a straightforward approach to achieving the property in Eq. (2) would be to directly
adopt it as an objective (e.g., minimize the square loss ||Ep(Y |X)[Y < f(X, q)]� q||2); unfortunately,
this objective function’s gradient comes from an indicator function that is ineffective for learning
the network. We bypass this learning difficulty with our joint learning scheme, but still ensure the
property in Eq. (2) is properly satisfied when our framework is optimized.

Specifically, the neural networks f✓ and g� are bestowed with two distinct losses,

g-loss� : Eq⇠p(q),x,y⇠p(X,Y )

⇥
`(1(y<f✓(q,x)), g�(f✓(q,x),x))

⇤
(3)

f-loss✓ : Eq⇠p(q),x⇠p(X)

⇥
(q � g�(f✓(q,x),x))

2
⇤
. (4)

The loss ` is a binary cross-entropy loss (or logistic loss), `(b, a) = �b log a� (1� b) log(1� a).
Eq. (3) and (4) are the losses in expectation; in practice, we would use empirical risk minimization.
The distribution for quantiles p(q) can be chosen as desired. Any distribution that fully covers
the (0, 1) percentile space satisfies our theoretical framework; in practice, we choose Unif(0, 1)
(uniform distribution). A visualization of this proposed model framework is given in Figure 1. Under
conditions similar to the theoretical claims in GANs (Goodfellow et al., 2014), these losses induce a
fixed point for f and g with their desired properties (see Section 4.1).

The design of this two-loss framework can be understood as follows. When g is updated to
minimize the the g-loss, f functions as a space searching tool to help g acquire information about the
distribution function over the full relevant space. We demonstrate in our theoretical analysis that f
needs only to satisfy mild conditions for g to be able to learn the optimal function. Essentially, if f
varies constantly as a function of q and covers the full probability space, then g will learn the CDF by
matching the relative count of these events to its estimated probabilities. We show in experiments that
even using a fixed f with a prespecified distribution, g is still able to yield good results. We are still
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Overview of Theoretical Analysis
• Prop 1: If 𝑓(⋅) satisfies mild conditions, then 

a fixed point of 𝑔 ⋅ is at the ideal solution.
• Theorem 2: Under a few assumptions, 𝑔 ⋅

asymptotically captures the correct 
distribution.

• Prop 3: If 𝑔 ⋅ is optimal, then a fixed point of 
𝑓(⋅) is at the ideal solution.



Robust to overfitting

Quantile Regression with Deep Networks Collaborating Networks



Real-World Experiments
• Evaluated on 6 real-world datasets of various 

sizes
– Last dataset is on forecasting future A1c in a 

diabetic patient population from Duke Medical 
Records (18,335 patients)

• Compare on calibration metrics and fit 
metrics
– Mean Absolute Error (MAE) and goodness-of-fit 

(discrete approximation of log-likelihood)
Duke Health IRB Pro00025650



Calibration Metrics

COLLABORATING NETWORKS

Table 4: Quantitative calibration results on the real-world dataset. Each method is given ( ˆcal / 9̂0%
) on each dataset. Because the EHR dataset was on a secure system, it had compatibility
issues with the CQR software and no result is given. In EHR dataset, the result of combining
CN with LSTM is reported in bracket.

Method/Data CPU Energy MPG Crime Airline EHR
ˆcal/9̂0% (%) ˆcal/9̂0% (%) ˆcal/9̂0% (%) ˆcal/9̂0% (%) ˆcal/9̂0% (%) ˆcal/9̂0% (%)

CN-g 4.62 ± 2.16 / 80.96 ± 3.64 1.78 ± 0.63 / 88.80 ± 1.26 3.16 ± 1.16 / 86.02 ± 2.14 2.70 ± 1.51 / 87.89 ± 1.72 0.30 / 90.36 0.18 / 90.01 (0.25 / 89.25)
CN-f 7.78 ± 1.68 / 72.41 ± 3.79 2.42 ± 0.81 / 88.29 ± 1.71 6.03 ± 1.02 / 75.32 ± 2.58 2.86 ± 1.50 / 88.38 ± 1.72 0.47 / 90.89 0.47 / 90.39 (0.65 / 89.09)
g-only 4.59 ± 2.01 / 88.67 ± 4.35 2.00 ± 0.91 / 88.95 ± 1.74 3.31 ± 1.35 / 86.21 ± 2.38 2.92 ± 1.55 / 87.43 ± 2.26 0.25 / 90.57 0.15 / 90.10 (1.61 / 89.81)

DP 35.58 ± 1.26 / 99.64 ± 0.77 15.36 ± 0.57 / 97.55 ± 0.54 29.79 ± 0.67 / 99.93 ± 0.19 15.72 ± 0.42 / 96.32 ± 0.39 16.16 / 96.39 20.71 / 97.36
DP-CR 5.61 ± 1.81 / 89.63 ± 5.18 2.45 ± 0.76 / 88.95 ± 2.37 3.82 ± 1.01 / 89.10 ± 3.15 1.60 ± 0.74 / 91.21 ± 1.20 0.64 / 89.67 0.34 / 90.45
CDP 4.88 ± 1.99 / 92.53 ± 1.93 2.17 ± 0.68 / 86.44 ± 2.34 4.58 ± 1.37 / 89.94 ± 2.03 10.65 ± 0.86 / 73.99 ± 1.18 5.03 / 91.46 3.64 / 89.03
GPR 6.82 ± 1.81 / 83.49 ± 4.73 3.53 ± 1.01 / 89.65 ± 1.56 5.19 ± 1.27 / 90.26 ± 2.52 7.84 ± 0.49 / 89.94 ± 0.99 8.30 / 93.16 6.46 / 90.62
PPGPR 10.61 ± 3.21 / 74.58 ± 6.45 6.98 ± 1.17 / 77.29 ± 2.30 7.14 ± 1.93 / 77.46 ± 3.47 4.00 ± 0.87 / 83.33 ± 1.18 7.02 / 93.61 2.98 / 90.25
EN 6.17 ± 3.45 / 81.69 ± 6.66 6.58 ± 1.41 / 77.95 ± 1.97 3.64 ± 1.22 / 85.32 ± 2.90 9.08 ± 0.67 / 76.39 ± 2.04 7.89 / 93.93 1.74 / 88.62
CQR 4.81 ± 2.12 / 89.88 ± 3.24 2.23 ± 0.94 / 91.01 ± 1.11 3.59 ± 1.29 / 91.47 ± 3.53 1.78 ± 0.85 / 90.27 ± 1.52 0.38 / 90.04 -

(a) Airline calibration (b) EHR calibration

Figure 8: Visualization of the difference between the nominal and the empirical coverage for two
real-world dataset: Airline and EHR. Curves lying closely on the 0 % horizontal line
represents a good calibration result. In both cases, the three variants of CN consistently
calibrate all nominal levels.

the middle spread of the outcome (MAE), but is less so on ˆgof because it struggles with the tails
of the distribution. As a Gaussian distribution provides a close approximation to many families of
distributions and also because of the central limit theorem, Gaussian based approaches provide good
uncertainty estimates in many cases such as in CPU and MPG, as reflected by their ˆgof . Nonetheless,
in the cases where the outcome distribution is non-symmetric and less Gaussian-like, CN’s advantage
becomes more salient as it approximates a wider spectrum of outcome distributions. For example,
in the crime data, the outcome is the number of violent crimes per 100K population, and Poisson
distribution is usually the appropriate choice for such targets (Short et al., 2008). Since most of
the regions have very low crime rate 4, a larger sample size might be required to approximate the

4. https://archive.ics.uci.edu/ml/datasets/communities+and+crime
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Model Fitting Metrics

ZHOU, LI, WU, AND CARLSON

distribution as a Gaussian-like. CR efficiently re-calibrate DP via a two-step procedure, and has also
rectified its understanding of the outcome uncertainties by augmenting the model fitting ( ˆgof ).

Table 5: Quantitative accuracy results on the real-world dataset. Each method is given (MAE / ˆgof )
metric for each dataset. It is not computationally feasible to calculate ˆgof for CQR.

Method/Data CPU Energy MPG Crime Airline EHR
MAE / ˆgof MAE / ˆgof MAE / ˆgof MAE / ˆgof MAE / ˆgof MAE / ˆgof

CN-g 0.169 ± 0.022 / -1.053 ± 0.182 0.529 ± 0.013 / -1.796 ± 0.036 0.256 ± 0.010 / -1.289 ± 0.091 0.384 ± 0.015 / -1.379 ± 0.041 0.545 / -1.824 0.445 / -1.525 (0.463 / -1.554)
CN-f 0.167 ± 0.017 / -1.626 ± 0.354 0.529 ± 0.013 / -1.957 ± 0.132 0.257 ± 0.010 / -1.780 ± 0.022 0.384 ± 0.015 / -1.459 ± 0.047 0.546 / -1.829 0.446 / -1.566 (0.463 / -1.652)
g-only 0.155 ± 0.021 / -1.031 ± 0.147 0.531 ± 0.014 / -1.796 ± 0.036 0.262 ± 0.016 / -1.288 ± 0.071 0.387 ± 0.016 / -1.383 ± 0.041 0.547 / -1.830 0.453 / -1.539 (0.453 / -1.517)

DP 0.167 ± 0.027 / -2.265 ± 0.135 0.553 ± 0.015 / -2.009 ± 0.032 0.259 ± 0.011 / -1.928 ± 0.043 0.443 ± 0.008 / -1.898 ± 0.040 0.565 / -2.207 0.464 / -1.969
DP-CR 0.167 ± 0.028 / -1.294 ± 0.098 0.553 ± 0.015 / -1.859 ± 0.022 0.259 ± 0.013 / -1.338 ± 0.097 0.443 ± 0.009 / -1.749 ± 0.045 0.532 / -1.905 0.457 / -1.660
CDP 0.174 ± 0.030 / -1.020 ± 0.088 0.549 ± 0.018 / -1.887 ± 0.043 0.252 ± 0.011 / -1.281 ± 0.081 0.408 ± 0.009 / -2.017 ± 0.094 0.571 / -2.122 0.462 / -1.699
GPR 0.190 ± 0.043 / -1.310 ± 0.213 0.548 ± 0.016 / -1.850 ± 0.024 0.250 ± 0.012 / -1.293 ± 0.066 0.403 ± 0.006 / -1.717 ± 0.038 0.606 / -2.152 0.506 / -1.797
PPGPR 0.197 ± 0.042 / -1.286 ± 0.234 0.569 ± 0.016 / -2.122 ± 0.063 0.249 ± 0.013 / -1.394 ± 0.113 0.400 ± 0.009 / -1.719 ± 0.059 0.588 / -2.100 0.472 / -1.663
EN 0.191 ± 0.039 / -1.178 ± 0.181 0.567 ± 0.014 / -2.105 ± 0.076 0.263 ± 0.017 / -1.412 ± 0.207 0.430 ± 0.010 / -1.932 ± 0.082 0.564 / -2.049 0.456 / -1.644
CQR 0.203 ± 0.050 / - 0.552 ± 0.017 / - 0.276 ± 0.018 / - 0.431 ± 0.020 / - 0.562 / - -

(a) Crime sharpness (b) EHR sharpness

Figure 9: Visualization of the interval sharpness for two real-world dataset: Crime and EHR. The
true coverage for every nominal level of coverage is calculated for each method. These true
coverages (x axis) are plotted against the median interval widths under that true coverage
level (y axis). A curve in low position can be interpreted as given a level of true coverage,
it generates comparatively narrower intervals, which gives sharpness. CN-g typically
generates sharper intervals for both cases.

Figure 9 summarizes the interval sharpness information by plotting the true interval coverage
against the median interval width for each method. A lower curve indicates that a method generate
sharper intervals. In most tested tasks, CN is either the sharpest or equally sharp to competing
methods. Apart from the evaluation on numeric metric, the sharpness plot also supports CN-g’s
advantage in more accurately capturing the conditional distributions as it achieves both calibration
and sharpness instead of trading one for another. We also learn from this sharpness plot that CR’s
recalibation on DP does not enforce sharper intervals. CR improves calibration by adjusting nominal
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Forecasting Uncertainty
COLLABORATING NETWORKS

level to match up with the empirical level. However, it does not extract extra information from the
data.

Figure 10: Visualization of the distributions of the generated 90% intervals for different last observa-
tion times(t). The x axis describes the two criteria for last observation times: t  8; t > 8.
For each criterion, 2,000 random observations are selected to generate the distribution
of the corresponding interval withds (y axis) under each method. DP and GPR are not
included as they assumes homoskedasticity, so their intervals do not vary much. The
legend denotes each method and their respective empirical coverage under the nominal
90 % level.

In EHR data, as the patients’ visits to hospitals are not intervaled regularly, we could further
assess how each method responds to the heterogeneous visiting times. We use the 90% interval width
to study heterogeneity in visiting times, since each method is able to reach approximate 90% true
coverage given 90% nominal levels. For each of the following criteria on last observation time(t):
t  8; t > 8 , we randomly select 2,000 observations and compare the estimated interval widths
among different methods. The result is encapsulated in Figure 10 with boxplots. First, we notice that
as times increases, the interval widths generally get larger with more spread, which indicates these
models’ agreement on giving larger variability and uncertainty to the data points with increased time.
Under each time, the position of CN-g’s IQR is lower than the others. It also reflects CN-g’s sharpness
as it reaches approximately the same true coverage but with mostly narrower intervals. Overall, the
CN’s joint learning framework shows its capability in drawing reliable uncertainty estimates for
large-scale complex data, and producing significantly sharper intervals. These uncertainty estimates
can be used to derive future values for patients, and our empirical results suggest that the uncertainty
intervals are highly trustworthy.

6. Discussion and Conclusion

In this paper we propose a collaborative learning scheme by simultaneously training two neural
networks that characterize the CDF and inverse CDF of the conditional distribution P (Y |X). The
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Conclusions/Comments
• Collaborating Networks are a theory-

backed approach to quantile regression
• Can be integrated into nearly any deep 

learning framework
• Moving towards multi-modal data 

integration with remote sensing and 
sensor networks
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