

Active Neutron Multiplicity Counting of Kilogram Quantities of Highly Enriched Uranium

MTV Workshop, 2022

March 23rd

Flynn Darby^{1,2}, Jesson D. Hutchinson², Michael Y. Hua^{1,2}, Robert A. Weldon², Geordie McKenzie², Juliann R. Lamproe^{1,2}, Shaun D. Clarke¹, Sara A. Pozzi¹

> ¹University of Michigan ²Los Alamos National Laboratory

Introduction and Motivation

- Measured Uranium Subcritical and Critical (MUSiC)
- Benchmark measurements
- Analyze neutron noise techniques for large HEU assemblies, specifically Neutron multiplicity counting (NMC)
- Neutron multiplicity counting provides the activity and quantity of fissionable and fissile material
 - Useful in safeguards and criticality safety

Mission Relevance

- International Atomic Energy Agency (IAEA) significant quantity (SQ) of HEU = 25 kg
 - We measure configurations of ~10-60 kg HEU
- Neutron multiplicity counting estimates system parameters of special nuclear material (SNM)
- Verifying declared amounts crucial to avoid diversion

Technical Approach

- Experiment at NCERC
- Rocky Flats shells (93% ²³⁵U)
 - Cf-252 source at center
- OSCAR 3 by 4 array of stilbene
 - Measure tens of kg HEU configs
 - PSD for neutron detection
- Analyze neutron pulse times
 - Set gate width τ , sequential gating
 - Use three-parameter model to calculate multiplet rates and system parameters

Technical Approach

- Measured 166 cm from center for minimum 60 min/configuration
- Simulate configurations in MCNP6.2
 - M_L and k_{eff} for each configuration
- Simulate detectors in MCNPX-Polimi
 - Replicate detector time-correlated neutron response

Pulse-shape discrimination

- Measured fast neutrons and gamma rays from kg-quantity highly-enriched uranium
- Increasing intensity of neutron band with each configuration
- Minor pulse pileup above neutron bands for closest to critical configurations
- Take 50 keVee slices and chose best separation
- Take 3σ upper boundary of gamma distribution for each slice and fit with a power function for discrimination line

Results

- $\tau = 1 \ \mu s$
- Singles, doubles and triples increase with HEU mass
- Leakage multiplication estimates bounded by two simulation values
 - MCNP6.2 KCODE
 - Calculate M_L from k_{eff} eigenvalue
 - MCNP6.2 F1 tally
 - Take M_L as F1 tally value (neutron leaked from assembly per source neutron)

Expected Impact

- First neutron multiplicity counting with safeguards focus on large quantities of HEU with organic scintillators
- Neutron multiplicity counting of bulk HEU provides experimental comparison for "Multiplicity Theory Beyond the Point Model"
- Promote continued use of organic scintillators for measurements at NCERC and elsewhere

MTV Impact

- MTV connected our group closely with NEN-2 at LANL
- We will continue to collaborate with LANL at NCERC and elsewhere
- Explore new system designs for plutonium samples in collaboration with LANL

Conclusion

- First neutron multiplicity counting of > 10 kg quantities of HEU with organic scintillators
 - Precise measurement of multiplets
 - Decent estimates of M₁
- Furthers the use of organic scintillators for neutron noise measurements

Next Steps

- Simulating detector response in MCNPX-PoliMi
 - Validate understanding of measured response
- Validation of "Multiplicity Theory Beyond the Point Model"
 - Compare measured neutron multiplicity counting values to theory
- Coupling of interrogator and sample
 - For $M_L < 2$, has been shown to strongly correlate
 - Investigate for these configurations of $M_L > 2$
 - Estimate sample masses with coupling

Acknowledgements

Massachusett						
Institute of						
Technology						

The Consortium for Monitoring, Technology, and Verification would like to thank the NNSA and DOE for the continued support of these research activities.

This work is supported by the National Criticality Experiments Research Center through the Department of Energy (DOE) Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration (NNSA), the Consortium for Monitoring, Technology, and Verification under DOE NNSA award number DENA0003920, and the DOE through the Los Alamos National Laboratory (LANL) operated by Triad National Security, LLC, for the NNSA under Contract No. 89233218CNA000001. Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory.

PennState

PRINCETON UNIVERSITY

Additional Slides

Pulse-shape discrimination for neutrons

- Increasing intensity of neutron band with each configuration
- Minor pulse pileup above neutron bands
- Take 50 keVee slices and fit neutron and gamma tail-to-total histograms to gaussian
- Take 3σ upper boundary of gamma distribution for data point and fit ax^b + c to discrimination points. All points above ax^b + c are taken to be neutrons

Preliminary PoliMi Results (Time-to-detection)

- Simulation shows the distribution of Cf-252 SF start time to neutron detection
- As our fission chains increase with each configuration the mean of our timing distribution increases
- Surprising quick detections for config7 (closest to critical) need to be further investigated

Feynman-Y Results

- Clearly shows multiplication of doubles rate across configurations
- Further justifies 1 $\mu s \ \tau \ w/$ plateaus
- Saturation of detection system seems to be a lesser issue for doubles than singles

