

	Beam	Neutron Flux at Tally
		$(10^6 \text{ n s}^{-1}, 110 \text{ eV})$
Linac	3.0	$^{\sim} {\sf DT} \ 1.57 \pm 0.04$
(MeV)	3.5	5.0 ± 0.1
	4.0	10.8 ± 0.3
	4.5	18.9 ± 0.5
	5.5	~24x DT 43 ± 1
Fusion	DD**	0.398 ± 0.006
	DT **	1.80 ± 0.07

[1] ENDF/B-VII.1. National Nuclear Data Center. Brookhaven National Laboratory. 2018. Adapted from "Development of a portable system for epithermal neutron resonance analysis," Ethan Klein, 2020 MTV Conference. [2] "NIST Center for Neutron Research." Center for Research in Extreme Batteries. 2021.

$ = \Gamma_{e^{-}} \cdot \int_{0} \eta_{\text{brem}}(E_{e^{-}}, E_{\gamma}) \cdot \int_{0} \Sigma_{2} H(\theta) $	$\Gamma_{\mathrm{e}^{-}} \cdot J$	$\int_{0}^{E_{e^{-}}} \left[\eta_{\rm brem} (E_{e^{-}}) \right]_{0} \right]$	$(E,E_{\gamma})\cdot\int_{0}^{x}\Sigma_{2H}(E_{\gamma})$
---	-----------------------------------	---	--

Linac	Fusion:
stem for radiation damage studies	Simple, compact s
ng x-rays need significant shielding	DD has low flux; D

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **Department of Energy National Nuclear Security Administration award number DE-NA0003920**

