

Intelligent Radiation Awareness Drone (iRAD): Creation of an Unmanned Aerial Vehicle with Radiation Hazard Guided Navigation

ME Trager, RA Kim, CC Davis, RS Ho, M Kidambi, A Phatke, K Sumter, P Wang, JD Noey University of Michigan, Radiological Health Engineering Laboratory Prof. Kim Kearfott, kearfott@umich.edu Consortium for Monitoring, Technology, and Verification (MTV)

Introduction and Motivation

* Current radiation survey methods are time consuming or not comprehensive

- => Algorithmic source reconstruction provides full maps with nonuniform, incomplete sampling
- => Search paths could be optimized based upon existing information
- => Multiple, coordinated moving sensors possible
- * Attenuation and scatter confound measurements
- => Line-of-sight airborne detectors (minimize attenuation for surface contaminations)
- => Spectroscopic SiPM-scintillators
- * Robotics and drones are popular with students
 => Combine with nuclear application

Mission Relevance

* Characterize background radiation to recognize changes caused by human activity

* Rapidly respond to actual or threatened radiological events

* Encourage undergraduates to pursue graduate degrees in relevant areas

Technical Approach

- * Modified drone hardware bundle (DJI F550)
- * Open-source control software (PX4 Autopilot)
- * Additional on-board computer (RPi 4)
- * Modular payload (SiPM scintillator, WiFi sensor)

- Data-informed navigation and mapping algorithm
- * Interdisciplinary
- undergraduate team
- * Design/build/test cycle

Figure 1: Modified DJI F550 drone kit showing focal points of individual undergraduate student efforts to be integrated into the system.

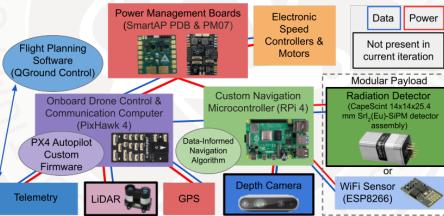


Figure 2: Power and data flow between main components integrated into iRAD.

Results

- * Full system designed (first iteration)
- * Wiring harness for essential flight hardware created
- * Stand alone collision avoidance and terrain holding implemented
- * Firmware for interfacing mapping algorithm with PX4 in development
- This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920

Expected Impact

Ability to rapidly survey and map areas for radiation contamination or Wi-Fi emitters

MTV Impact

* Only source of external funding

* 9 undergrads directly engaged in research Project designed around student's interests to progress individual academic goals

* Opportunities for presentations and publications

Conclusion

- * Individual subsystems are nearly completed!
- * Efforts will result in a useful system for several different application spaces
- * Data-informed navigation algorithms are unique and appear viable

* Achievable using an interdisciplinary team of undergraduates:

* Students are being introduced to nuclear topics, encouraged to engage in research, and ultimately prepared for graduate programs

Next Steps

- * Radiation detector selection
- * Full system integration
- * Flight testing
- * Radioactive source testing (small scale)
- * WiFi source testing (larger scale)
- * Research and development Cycle (2, 3, etc.)

