

Modeling of Plutonium (Pu) Production in Foreign Nuclear Fuel Cycles (FNFC)

MTV Workshop, 2020 (03/11/2020)

Sunil Chirayath and Patrick O'Neal Center for Nuclear Security Science and Policy Initiatives (NSSPI) Department of Nuclear Engineering, Texas A&M University

Introduction and Motivation

- Nuclear weapon states outside of the NPT and facilities not under the IAEA safeguards
 - Nuclear security (non-state actors) and safeguards (state actors) concerns of plutonium production in these states

• Motivation: Identify forensics signatures and proliferation identifiers for these Nuclear Fuel Cycles

Mission Relevance

- Develop an enhanced and innovative FNFC monitoring method
 - Nuclear forensics signatures and proliferation identifiers of FNFC
 - Modeling and experimental efforts of Pu and ²³³U production reactors and associated fuel cycle facilities
 - Accurate methods for discriminating source of Pu and ²³³U (for nuclear security and safeguards applications)

Technical Work Plan in Collaboration with National Labs

- Task 1: High-fidelity computational modeling of a set of FNFCs
 - U and Th fueled reactors (research and power) with fuel reprocessing (aqueous and electrochemical)
- Task 2: Experiments to point-validate the results from the modeling efforts.
 - Low-fluence neutron irradiation of U and Th surrogates using neutron spectrum modifying capsules to produce milligram quantities of Pu and ²³³U
 - Radiochemical separations and contaminant analyses using alpha, gamma and mass spectrometry
- Task 3: A maximum likelihood data analytics method to discriminate source reactor-type of Pu and ²³³U
 - Fuel burnup and time since irradiation predictions

$$L(M|r_{mes}) \propto f(r_{mes}|M) = \prod_{j=1}^{n} \frac{1}{\sigma_{j,sim}\sqrt{2\pi}} exp\left\{-\frac{(r_{j,mes}-r_{j,sim})^2}{2\sigma_{j,sim}^2}\right\}$$
$$Log \ L(M|r_{mes}) = \sum_{j=1}^{n} \left[log\left(\frac{1}{\sigma_{j,sim}\sqrt{2\pi}}\right) - \frac{(r_{j,mes}-r_{j,sim})^2}{2\sigma_{j,sim}^2}\right]$$
$$\sigma_{Log \ L}^2 \cong \sum_{j=1}^{n} \left(\frac{(r_{j,mes}-r_{j,sim})}{\sigma_{j,sim}^2}\right)^2 \times \left(\sigma_{j,mes}^2 + \sigma_{j,sim}^2\right)$$

Task1: Simulated Reactor Library

Task 2: Experimental Irradiation at HFIR

- Depleted UO₂ fuel samples irradiated at HFIR
- Gadolinium irradiation capsule
- Burnup = 4.36 ± 0.28 GWd/MTU
- Each pellet: 11 mg uranium, produced 200 μg plutonium with 87% ²³⁹Pu
- TSI = 1601 days

HFIR irradiated material mass spectroscopy measured set of intra-element ratio values

Patio	Measured	Measurement
Katio	Value	Error
¹³⁷ Cs/ ¹³³ Cs	1.30×10^{0}	6.7%
¹³⁴ Cs/ ¹³⁷ Cs	$3.74 imes 10^{-3}$	4.2%
¹³⁵ Cs/ ¹³⁷ Cs	$4.25 imes 10^{-1}$	10%
¹⁵⁴ Eu/ ¹⁵³ Eu	$4.67 imes 10^{-2}$	4.5%
¹⁵⁰ Sm/ ¹⁴⁹ Sm	3.23×10^{0}	2.7%
¹⁵² Sm/ ¹⁴⁹ Sm	2.93×10^{0}	1.3%
²⁴⁰ Pu/ ²³⁹ Pu	$8.28 imes 10^{-2}$	0.59%
²⁴¹ Pu/ ²³⁹ Pu	$3.30 imes 10^{-2}$	0.88%
²⁴² Pu/ ²³⁹ Pu	$1.88 imes 10^{-3}$	0.88%

Task 2: Experimental Irradiation at MURR

- Natural UO₂ fuel samples irradiated at MURR
- Complex irradiation history
- Irradiation history and axial/radial location of samples known
- Burnup = 0.97 ± 0.03 GWd/MTU
- TSI = 318 days

MURR irradiated material mass spectroscopy measured set of intra-element ratio values

Patio	Measured	Measurement
Katio	Value	Error
¹³⁷ Cs/ ¹³³ Cs	$9.75 imes 10^{-1}$	6.6%
¹³⁴ Cs/ ¹³⁷ Cs	$3.84 imes 10^{-3}$	7.0%
¹³⁵ Cs/ ¹³⁷ Cs	$2.95 imes 10^{-1}$	6.8%
¹⁵⁰ Sm/ ¹⁴⁹ Sm	$9.88 imes 10^{0}$	6.7%
¹⁵² Sm/ ¹⁴⁹ Sm	6.65×10^{0}	5.7%
²⁴⁰ Pu/ ²³⁹ Pu	$4.77 imes 10^{-2}$	5.7%
²⁴¹ Pu/ ²³⁹ Pu	$2.40 imes 10^{-3}$	5.8%
²⁴² Pu/ ²³⁹ Pu	$5.99 imes 10^{-5}$	8.3%

Maximum Likelihood Results – HFIR Cont.

Results of Maximum Likelihood Analysis for the HFIR Irradiated Material (a) 3-D Likelihood Surface Map and (b) 2-D Contour Map for the Most Likely Reactor (HFIR)

		Selected	
Datia	Measured	HFIR	Selected
Kallo	Value	Simulation	/Mes
		Value	
¹³⁷ Cs/ ¹³³ Cs	1.30×10^{0}	$9.74 imes 10^{-1}$	0.73
¹³⁴ Cs/ ¹³⁷ Cs	3.74×10^{-3}	3.71×10^{-3}	0.99
¹³⁵ Cs/ ¹³⁷ Cs	4.25×10^{-1}	$4.95 imes 10^{-1}$	1.16
¹⁵⁴ Eu/ ¹⁵³ Eu	4.67×10^{-2}	$4.66 imes 10^{-2}$	1.00
¹⁵⁰ Sm/ ¹⁴⁹ Sm	$3.23 imes 10^{0}$	3.33×10^{0}	1.03
¹⁵² Sm/ ¹⁴⁹ Sm	$2.93 imes 10^{0}$	2.46×10^{0}	0.84
²⁴⁰ Pu/ ²³⁹ Pu	8.28×10^{-2}	$8.75 imes 10^{-2}$	1.06
²⁴¹ Pu/ ²³⁹ Pu	3.30×10^{-2}	4.22×10^{-2}	1.28
²⁴² Pu/ ²³⁹ Pu	1.88×10^{-3}	2.72×10^{-3}	1.44

Maximum Likelihood Results – MURR Cont.

Results of Maximum Likelihood Analysis for the MURR Irradiated Material (a) 3-D Likelihood Surface Map and (b) 2-D Contour Map for the Most Likely Reactor (MURR)

		Selected	
Patio	Measured	MURR	Selected
Kallo	Value	Simulation	/Mes
		Value	
¹³⁷ Cs/ ¹³³ Cs	9.75×10^{-1}	$9.43 imes 10^{-1}$	0.97
¹³⁴ Cs/ ¹³⁷ Cs	3.84×10^{-3}	3.77×10^{-3}	0.98
¹³⁵ Cs/ ¹³⁷ Cs	2.95×10^{-1}	2.77×10^{-1}	0.94
¹⁵⁰ Sm/ ¹⁴⁹ Sm	$9.88 imes 10^{0}$	$1.02 imes 10^1$	1.03
¹⁵² Sm/ ¹⁴⁹ Sm	$6.65 imes 10^{0}$	$6.20 imes 10^{0}$	0.93
²⁴⁰ Pu/ ²³⁹ Pu	4.77×10^{-2}	4.42×10^{-2}	0.93
²⁴¹ Pu/ ²³⁹ Pu	$2.40 imes 10^{-3}$	$2.30 imes 10^{-3}$	0.96
²⁴² Pu/ ²³⁹ Pu	$5.99 imes 10^{-5}$	$6.01 imes 10^{-5}$	1.00

Spoof 2: 50% PWR (4 GWD/MTU) and 50% FBR (2 GWD/MTU) with one year cooling period

	Likelihood	Burnup (GWD/MTU)	Time (days)
PWR	9.44×10^{-75}	0.54	1
PHWR	4.60×10^{-92}	0.14	1
FBR	1.38×10^{-11}	2.01	592

Spoof 3: 50% PHWR (1 GWD/MTU) and 50% FBR (2 GWD/MTU) with one year cooling period

Expected Impact

- Successful completion of this project will enhance the US capability to monitor FNFCs
 - Application in environmental and wide area environmental sample analyses (Safeguards monitoring)
 - Application in nuclear security (Material out of regulatory control)
- A library for various combinations of FNFC facility operations that could produce Pu and ²³³U

MTV Impact

- Two PhD students and one MS student
- Internships in LLNL and ANL and potential transitions as employees
- Faculty time in LLNL and ANL
- Workshops:
 - Reactor core physics simulation with MCNP6 for users with single user license
 - Radiochemistry analytical techniques
- Technology transitions
 - National lab collaborations and potential transition of the methodology
 - Collaborated with DHS in the past on similar project

Conclusion

- This project will enhance US capability to monitor FNFC
- We will produce a library for various combinations of FNFC facility operations that could produce Pu and ²³³U. The data will be used to inform and validate specific facility models
- Nuclear engineering students with nuclear reactor core and fuel cycle modeling, simulation and radiochemical expertise for potential transition to national laboratories
- Workshops: To enhance MTV students/researcher expertise

Next Steps

- New experimental irradiation of LEU in MURR and analysis
- Fuel separation modeling in collaboration with ANL and LLNL
- Thorium irradiation modeling, separation and analysis

Acknowledgements

	4				
М	ass	acł	าน	set	ts
In	stit	ute	0	f	
Те	chn	olo	g	У	

The Consortium for Monitoring, Technology, and Verification would like to thank the NNSA and DOE for the continued support of these research activities.

PennState

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920

Backup Slides

Reactor Library Model Characteristics

Reactor Model	Power (MWth)	Fuel Type (at.% ²³⁵ U)	Moderator	Coolant
PWR (2.35%)	3400	UO ₂ (2.35)	Light Water	Light Water
PWR (3.4%)	3400	UO ₂ (3.4)	Light Water	Light Water
PWR (4.45%)	3400	UO ₂ (4.45)	Light Water	Light Water
FBR (blanket)	1250	UO ₂ (0.25)	-	Liquid Sodium
PHWR	756	UO ₂ (0.72)	Heavy Water	Heavy Water
NRX	40	UO ₂ (0.72)	Heavy Water	Heavy Water
MAGNOX	25	U metal w/ 0.5% Al (0.72)	Graphite	Carbon Dioxide
HFIR (irradiation)	85	UO ₂ (0.25)	Light Water	Light Water
MURR (irradiation)	10	UO ₂ (0.72)	Light Water	Light Water

MCNP Reactor Models

TÉŦ

NRX

Reactor Library Neutron Spectra

HFIR Irradiation Spectrum

MURR Irradiation Spectrum

MURR Irradiation Burnup

• Determination of burnup via ¹³⁷Cs measurements

•
$$A_n = \frac{CPS_n}{\varepsilon_{\gamma} * Y_{\gamma}}$$

Fuel Disc	CPS (Live)	Measured ¹³⁷ Cs Activity (Bq)	End of Irradiation ¹³⁷ Cs Activity (Bq)
А	69.86	$1.65 imes 10^6 \pm 2.48 imes 10^4$	$1.67 imes 10^6 \pm 2.51 imes 10^4$
В	70.25	$1.66 \times 10^{6} \pm 2.50 \times 10^{4}$	$1.68 imes 10^6 \pm 2.52 imes 10^4$
С	71.66	$1.70 \times 10^{6} \pm 2.55 \times 10^{4}$	$1.71 \times 10^{6} \pm 2.57 \times 10^{4}$

MURR Irradiation Burnup Cont.

- $Bu = \frac{N_{137Cs} * Q * GWd}{Y_{137} * U}$
 - Q = 202 ± 5 MeV
 - $GWd = (1 \text{ GWd} = 5.393 \times 10^{26} \text{ MeV})$
 - $Y_{137} = 6.221\% \pm 0.069\%$
 - $U = 14.52 \text{ mg} \pm 0.23 \text{ mg} (1.452 \times 10^{-9} \text{ MT})$

Fuel Disc	Measured Burnup (GWd/MTU)	Measured Burnup Error	Simulated Burnup (GWd/MTU)	Simulated Burnup Error	S/E
A	0.949	3.32%	0.960	0.086%	1.01 ± 0.03
В	0.954	3.32%	0.960	0.086%	1.01 ± 0.03
С	0.973	3.32%	0.960	0.086%	0.99 ± 0.03

Irradiated Sample Dissolution Setup

CENTER FOR NUCLEAR SECURITY SCIENCE & POLICY INITIATIVES

<u>25</u>

Irradiated Sample Measurements

- Gamma spectrometry measurements using a Canberra HPGe
- Mass spectrometry measurements using a Thermo Fisher Scientific ICP-MS

MURR Gamma Spectrometry

Isotope	Measured Activity in Full Disc (Bq)	Count Rate (CPS) Error	Simulated Activity in Full Disc (Bq)	S/E
⁹⁵ Zr	$2.54 imes 10^7$	< 0.1%	2.49×10^{7}	0.98
¹⁰³ Ru	$4.92 imes 10^6$	0.3%	$5.62 imes 10^{6}$	1.14
¹³⁴ Cs	$1.12 imes 10^5$	2.2%	$9.92 imes 10^4$	0.89
¹³⁷ Cs	$1.71 imes 10^6$	0.1%	$1.67 imes10^6$	0.98
¹⁴¹ Ce	$4.21 imes 10^6$	0.1%	$4.77 imes10^6$	1.13
¹⁴⁴ Ce	$2.94 imes 10^7$	< 0.1%	$3.11 imes 10^7$	1.06

MURR Mass Spectrometry

lsotope	Fissiogenic Ratio	Measured Mass (g)	Measured Mass Relative Error	Simulated Mass (g)	S/E
¹³³ Cs	1	$5.22 imes 10^{-7}$	6.0%	$5.42 imes 10^{-7}$	1.04
¹³⁵ Cs	1	$1.50 imes 10^{-7}$	6.2%	$1.42 imes 10^{-7}$	0.94
¹³⁷ Cs	0.976	$5.08 imes 10^{-7}$	6.0%	$5.14 imes 10^{-7}$	1.01
¹⁴⁸ Nd	0.983	$1.55 imes 10^{-7}$	5.8%	$1.54 imes 10^{-7}$	0.99
¹⁴⁹ Sm	1	$8.34 imes10^{-9}$	5.8%	$9.51 imes10^{-9}$	1.14
¹⁵⁰ Sm	0.589	$9.22 imes 10^{-8}$	5.8%	$9.24 imes 10^{-8}$	1.00
¹⁵² Sm	1	$5.55 imes 10^{-8}$	5.8%	$5.58 imes 10^{-8}$	1.01
¹⁵³ Eu	1	$1.76 imes 10^{-8}$	5.9%	$1.87 imes 10^{-8}$	1.06

MURR Mass Spectrometry - Plutonium

National Nuclear Security Administration

Measured Pu Mass (µg)	Measurement Error	Simulated Pu Mass (µg)	Simulated Stochastic Error	S/E
20.1	5.3%	20.9	0.78%	$\textbf{1.04} \pm \textbf{0.06}$
lsotope	Measured Pu Vector	Measured Pu Vector Relative Error	Simulated Pu Vector	S/E ^a
²³⁹ Pu	95.22%	0.1%	95.75%	1.01
²⁴⁰ Pu	4.55%	2.2%	4.05%	0.89
²⁴¹ Pu	0.23%	1.9%	0.20%	0.86
²⁴² Pu	<0.01%	N/A	<0.01%	N/A
			TEXAS A&M UNIVERSITY.	CENTER FOR NUCLEAR SECURITY SCIENCE & POLICY INITIATIVES

TEXAS A&M ENGINEERING EXPERIMENT STATION

TELET

Maximum Likelihood Calculation

• Likelihood equation:

$$L(M, Bu, TSI|r_{mes}) \propto f(r_{mes}|M, Bu, TSI) = \prod_{j=1}^{n} \frac{1}{\sigma_{j,sim}\sqrt{2\pi}} exp\left\{-\frac{(r_{j,mes}-r_{j,sim})^2}{2\sigma_{j,sim}^2}\right\}$$

• Log-likelihood equation:

$$Log L(M, Bu, TSI | r_{mes}) = \sum_{j=1}^{n} \left[log \left(\frac{1}{\sigma_{j,sim} \sqrt{2\pi}} \right) - \frac{\left(r_{j,mes} - r_{j,sim} \right)^2}{2\sigma_{j,sim}^2} \right]$$

• Variance in the log-likelihood:

$$\sigma_{Log L}^{2} = \sum_{j=1}^{n} \left(\frac{(r_{j,mes} - r_{j,sim})}{\sigma_{j,sim}^{2}} \right)^{2} \times \left(\sigma_{j,mes}^{2} + \sigma_{j,sim}^{2} \right)$$

30

- 1. E.D. KITCHER, J.M. OSBORN*, and <u>S.S. CHIRAYATH</u>, "Sensitivity Studies on a Novel Nuclear Forensics Methodology for Source Reactor-type Discrimination of Separated Weapons Grade Plutonium", *Nuclear Engineering Technology*, **51** (5), 1355-1364, August (2019).
- K.J. GLENNON*, J.M. OSBORN*, J.D. BURNS, E.D. KITCHER, <u>S.S. CHIRAYATH</u>, and C.M. FOLDEN III, "Measuring Key Sm Isotope Ratios in Irradiated UO₂ for use in Plutonium Discrimination Nuclear Forensics", Radioanalytical and Nuclear Chemistry, **320 (2)**, 405-414, May, (2019).
- 3. J.M. OSBORN*, K.J. GLENNON*, E.D. KITCHER, J.D. BURNS, C.M. FOLDEN III, and <u>S.S. CHIRAYATH</u>, "Experimental Validation of a Nuclear Forensics Methodology for Source Reactor-Type Discrimination of Chemically Separated Plutonium", *Nuclear Engineering and Technology*, **51** (2), 384-393, April (2019).
- 4. J.M. OSBORN*, K.J. GLENNON*, E.D. KITCHER, J.D. BURNS, C.M. FOLDEN III, and <u>S.S. CHIRAYATH</u>, "Computational and Experimental Forensics Characterization of Weapons-grade Plutonium Produced in a Thermal Neutron Environment", *Nuclear Engineering and Technology*, **50** (6), 820-828, August (2018).
- J.M. OSBORN*, E.D. KITCHER, J.D. BURNS, C.M. FOLDEN III, and <u>S.S. CHIRAYATH</u>, "Nuclear Forensics Methodology for Reactor-Type Attribution of Chemically Separated Plutonium", *Nuclear Technology*, 201, 1-10, January (2018).
- 6. M.W. SWINNEY*, C.M. FOLDEN III, R.J. ELLIS, and <u>S.S. CHIRAYATH</u>, "Experimental and Computational Forensics Characterization of Weapons-grade Plutonium Produced in a Fast Reactor Neutron Environment", *Nuclear Technology*, **197** (1), 1-11, January (2017).
- 7. P.M. MENDOZA*, <u>S.S. CHIRAYATH</u>, and C.M. FOLDEN III, "Fission Product Decontamination Factors for Plutonium Separated by PUREX from Low-Burnup Fast Neutron Irradiated Depleted UO₂", *Applied Radiation and Isotopes*, **118**, 38-42, September (2016).
- 8. <u>S. S. CHIRAYATH</u>, J. M. OSBORN*, and T.M. COLES*, "Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast and Thermal Reactors," *Science and Global Security*, **23** (1), 48-67 March, (2015).

Maximum Likelihood Results – MURR

Reactor Model	Log-Likelihood Value ^b	Predicted Burnup (GWd/MTU)	Predicted Time Since Irradiation (days)
MURR	+29.5 ± 1.1	1.02	295
NRX	+25.3 ± 3.0	1.03	208
MAGNOX	+13.2 ± 5.7	0.73	0
PWR (3.4%)	-6.02 ± 8.71	3.91	1381
PWR (4.45%)	-8.88 ± 10.2	≥ 3.90	1196
PWR (2.35%)	-12.7 ± 10.2	3.10	1202
PHWR	-14.7 ± 13.8	1.02	360
HFIR	-166 ± 28	4.40	1790
FBR	$-1.52 imes 10^5 \pm 2.02 imes 10^4$	≥ 4.73	0

Results of the Maximum Likelihood Analysis for the MURR Irradiated Material ^a

^a True Bu = 0.97 \pm 0.03 GWd/MTU, True TSI = 318 days

^b Maximum possible log-likelihood is 29.7

Task 3: Maximum Likelihood Results – HFIR

Reactor Model	Log-Likelihood Value ^b	Predicted Burnup (GWd/MTU)	Predicted Time Since Irradiation (days)
HFIR	+19.5 ± 4.6	4.29	1827
MURR	-46.6 ± 12.8	4.16	1700
NRX	-52.5 ± 12.5	4.13	1590
MAGNOX	-59.5 ± 13.3	3.00	421
PWR (2.35%)	-86.7 ± 21.0	≥ 5.31	1705
PHWR	-129 ± 32	≥ 4.35	2308
PWR (3.4%)	-284 ± 26	≥ 5.01	0
PWR (4.45%)	$-5.27 \times 10^3 \pm 1.38 \times 10^2$	≥ 3.90	0
FBR	$-6.39 imes 10^5 \pm 1.05 imes 10^4$	≥ 4.73	0

Results of the Maximum Likelihood Analysis for the HFIR Irradiated Material ^a

^a True Bu = 4.36 ± 0.28 GWd/MTU, True TSI = 1601 days

^b Maximum possible log-likelihood is 28.5

