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Introduction and Motivation
• Nuclear weapon states outside of the NPT and facilities not under the 

IAEA safeguards
• Nuclear security (non-state actors) and safeguards (state actors) concerns of 

plutonium production in these states

• Motivation: Identify forensics signatures and proliferation identifiers 
for these Nuclear Fuel Cycles
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Mission Relevance

• Develop an enhanced and innovative FNFC monitoring method
• Nuclear forensics signatures and proliferation identifiers of FNFC

• Modeling and experimental efforts of Pu and 233U production reactors and associated 
fuel cycle facilities

• Accurate methods for discriminating source of Pu and 233U (for nuclear security and 
safeguards applications)
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Technical Work Plan in Collaboration with 
National Labs
• Task 1: High-fidelity computational modeling of a set of 

FNFCs
• U and Th fueled reactors (research and power) with fuel reprocessing 

(aqueous and electrochemical)

• Task 2: Experiments to point-validate the results from the 
modeling efforts.

• Low-fluence neutron irradiation of U and Th surrogates using neutron 
spectrum modifying capsules to produce milligram quantities of Pu and 233U

• Radiochemical separations and contaminant analyses using alpha, gamma 
and mass spectrometry

• Task 3: A maximum likelihood data analytics method to 
discriminate source reactor-type of Pu and 233U

• Fuel burnup and time since irradiation predictions
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Task1: Simulated Reactor Library
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Task 2: Experimental Irradiation at HFIR
• Depleted UO2 fuel samples irradiated at HFIR
• Gadolinium irradiation capsule
• Burnup = 4.36 ± 0.28 GWd/MTU
• Each pellet: 11 mg uranium, produced 200 μg

plutonium with 87% 239Pu
• TSI = 1601 days

6

Ratio
Measured 

Value
Measurement 

Error 
137Cs/133Cs 1.30 × 100 6.7%
134Cs/137Cs 3.74 × 10-3 4.2%
135Cs/137Cs 4.25 × 10-1 10%
154Eu/153Eu 4.67 × 10-2 4.5%

150Sm/149Sm 3.23 × 100 2.7%
152Sm/149Sm 2.93 × 100 1.3%
240Pu/239Pu 8.28 × 10-2 0.59%
241Pu/239Pu 3.30 × 10-2 0.88%
242Pu/239Pu 1.88 × 10-3 0.88%

HFIR irradiated material mass spectroscopy 
measured set of intra-element ratio values
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Task 2: Experimental Irradiation at MURR
• Natural UO2 fuel samples irradiated 

at MURR
• Complex irradiation history
• Irradiation history and axial/radial 

location of samples known
• Burnup = 0.97 ± 0.03 GWd/MTU
• TSI = 318 days

7

Ratio
Measured 

Value
Measurement 

Error 
137Cs/133Cs 9.75 × 10-1 6.6%
134Cs/137Cs 3.84 × 10-3 7.0%
135Cs/137Cs 2.95 × 10-1 6.8%

150Sm/149Sm 9.88 × 100 6.7%
152Sm/149Sm 6.65 × 100 5.7%
240Pu/239Pu 4.77 × 10-2 5.7%
241Pu/239Pu 2.40 × 10-3 5.8%
242Pu/239Pu 5.99 × 10-5 8.3%

MURR irradiated material mass spectroscopy 
measured set of intra-element ratio values
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Maximum Likelihood Results – HFIR Cont.
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Ratio
Measured 

Value

Selected
HFIR 

Simulation
Value

Selected
/Mes

137Cs/133Cs 1.30 × 100 9.74 × 10-1 0.73
134Cs/137Cs 3.74 × 10-3 3.71 × 10-3 0.99
135Cs/137Cs 4.25 × 10-1 4.95 × 10-1 1.16
154Eu/153Eu 4.67 × 10-2 4.66 × 10-2 1.00

150Sm/149Sm 3.23 × 100 3.33 × 100 1.03
152Sm/149Sm 2.93 × 100 2.46 × 100 0.84
240Pu/239Pu 8.28 × 10-2 8.75 × 10-2 1.06
241Pu/239Pu 3.30 × 10-2 4.22 × 10-2 1.28
242Pu/239Pu 1.88 × 10-3 2.72 × 10-3 1.44

Results of Maximum Likelihood Analysis for the HFIR 
Irradiated Material (a) 3-D Likelihood Surface Map and  
(b) 2-D Contour Map for the Most Likely Reactor (HFIR)
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Maximum Likelihood Results – MURR Cont.
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Ratio
Measured 

Value

Selected
MURR 

Simulation
Value

Selected
/Mes

137Cs/133Cs 9.75 × 10-1 9.43 × 10-1 0.97
134Cs/137Cs 3.84 × 10-3 3.77 × 10-3 0.98
135Cs/137Cs 2.95 × 10-1 2.77 × 10-1 0.94

150Sm/149Sm 9.88 × 100 1.02 × 101 1.03
152Sm/149Sm 6.65 × 100 6.20 × 100 0.93
240Pu/239Pu 4.77 × 10-2 4.42 × 10-2 0.93
241Pu/239Pu 2.40 × 10-3 2.30 × 10-3 0.96
242Pu/239Pu 5.99 × 10-5 6.01 × 10-5 1.00Results of Maximum Likelihood Analysis for the MURR 

Irradiated Material (a) 3-D Likelihood Surface Map and  
(b) 2-D Contour Map for the Most Likely Reactor (MURR)
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Spoof 1: 50% PWR (4 GWD/MTU) and 50% PHWR (1 GWD/MTU) with one year cooling period

Spoof 2: 50% PWR (4 GWD/MTU) and 50% FBR (2 GWD/MTU) with one year cooling period
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Spoof 3: 50% PHWR (1 GWD/MTU) and 50% FBR (2 GWD/MTU) with one year cooling period
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Expected Impact
• Successful completion of this 

project will enhance the US 
capability to monitor FNFCs

• Application in environmental and wide 
area environmental sample analyses 
(Safeguards monitoring)

• Application in nuclear security 
(Material out of regulatory control)

• A library for various combinations of 
FNFC facility operations that could 
produce Pu and 233U
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MTV Impact
• Two PhD students and one MS student
• Internships in LLNL and ANL and potential transitions as employees 
• Faculty time in LLNL and ANL
• Workshops:

• Reactor core physics simulation with MCNP6 for users with single user license
• Radiochemistry analytical techniques

• Technology transitions
• National lab collaborations and potential transition of the methodology
• Collaborated with DHS in the past on similar project 
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Conclusion
• This project will enhance US capability to monitor FNFC
• We will produce a library for various combinations of FNFC facility 

operations that could produce Pu and 233U. The data will be used to 
inform and validate specific facility models 

• Nuclear engineering students with nuclear reactor core and fuel cycle 
modeling, simulation and radiochemical expertise for potential 
transition to national laboratories

• Workshops: To enhance MTV students/researcher expertise
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Next Steps

• New experimental irradiation of LEU in MURR and analysis
• Fuel separation modeling in collaboration with ANL and LLNL
• Thorium irradiation modeling, separation and analysis 
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Reactor Library Model Characteristics
Reactor Model Power (MWth) Fuel Type (at.% 235U) Moderator Coolant

PWR (2.35%) 3400 UO2 (2.35) Light Water Light Water

PWR (3.4%) 3400 UO2 (3.4) Light Water Light Water

PWR (4.45%) 3400 UO2 (4.45) Light Water Light Water

FBR (blanket) 1250 UO2 (0.25) - Liquid Sodium

PHWR 756 UO2 (0.72) Heavy Water Heavy Water

NRX 40 UO2 (0.72) Heavy Water Heavy Water

MAGNOX 25 U metal w/ 0.5% Al (0.72) Graphite Carbon Dioxide

HFIR (irradiation) 85 UO2 (0.25) Light Water Light Water

MURR (irradiation) 10 UO2 (0.72) Light Water Light Water
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MCNP Reactor Models

NRX Magnox

PHWR FBR

PWR

PWR Assembly
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Reactor Library Neutron Spectra
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HFIR Irradiation Spectrum
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MURR Irradiation Spectrum
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MURR Irradiation Burnup 
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Fuel 
Disc

CPS 
(Live)

Measured 137Cs Activity (Bq)
End of Irradiation 137Cs 

Activity (Bq)

A 69.86 1.65 × 106 ± 2.48 × 104 1.67 × 106 ± 2.51 × 104

B 70.25 1.66 × 106 ± 2.50 × 104 1.68 × 106 ± 2.52 × 104

C 71.66 1.70 × 106 ± 2.55 × 104 1.71 × 106 ± 2.57 × 104

• Determination of burnup via 137Cs measurements

• 𝐴4 =
?@AB
CD∗FD
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MURR Irradiation Burnup Cont. 
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Fuel Disc
Measured 

Burnup
(GWd/MTU)

Measured
Burnup Error 

Simulated 
Burnup

(GWd/MTU)

Simulated 
Burnup Error

S/E

A 0.949 3.32% 0.960 0.086% 1.01 ± 0.03

B 0.954 3.32% 0.960 0.086% 1.01 ± 0.03

C 0.973 3.32% 0.960 0.086% 0.99 ± 0.03

• 𝐵𝑢 = GHIJKL∗M∗NOP
FHIJ∗Q

• 𝑄 = 202 ± 5 MeV
• 𝐺𝑊𝑑 = (1 GWd = 5.393 × 1026 MeV)
• 𝑌3WX = 6.221% ± 0.069%
• 𝑈 = 14.52 mg ± 0.23 mg (1.452 × 10-9 MT)
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Irradiated Sample Dissolution Setup
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Irradiated Sample Measurements
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• Gamma spectrometry measurements using a 
Canberra HPGe

• Mass spectrometry measurements using a Thermo
Fisher Scientific ICP-MS
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MURR Gamma Spectrometry 
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Isotope
Measured 

Activity in Full 
Disc (Bq)

Count Rate (CPS)
Error 

Simulated 
Activity in Full 

Disc (Bq)
S/E

95Zr 2.54 ´ 107 < 0.1% 2.49 ´ 107 0.98

103Ru 4.92 ´ 106 0.3% 5.62 ´ 106 1.14

134Cs 1.12 ´ 105 2.2% 9.92 ´ 104 0.89

137Cs 1.71 ´ 106 0.1% 1.67 ´ 106 0.98

141Ce 4.21 ´ 106 0.1% 4.77 ´ 106 1.13

144Ce 2.94 ´ 107 < 0.1% 3.11 ´ 107 1.06
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MURR Mass Spectrometry 
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Isotope Fissiogenic
Ratio

Measured Mass 
(g)

Measured Mass 
Relative Error

Simulated Mass 
(g) S/E

133Cs 1 5.22 ´ 10-7 6.0% 5.42 ´ 10-7 1.04
135Cs 1 1.50 ´ 10-7 6.2% 1.42 ´ 10-7 0.94
137Cs 0.976 5.08 ´ 10-7 6.0% 5.14 ´ 10-7 1.01
148Nd 0.983 1.55 ´ 10-7 5.8% 1.54 ´ 10-7 0.99
149Sm 1 8.34 ´ 10-9 5.8% 9.51 ´ 10-9 1.14
150Sm 0.589 9.22 ´ 10-8 5.8% 9.24 ´ 10-8 1.00
152Sm 1 5.55 ´ 10-8 5.8% 5.58 ´ 10-8 1.01
153Eu 1 1.76 ´ 10-8 5.9% 1.87 ´ 10-8 1.06
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MURR Mass Spectrometry - Plutonium
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Measured Pu 
Mass (μg)

Measurement 
Error

Simulated Pu 
Mass (μg)

Simulated 
Stochastic Error S/E

20.1 5.3% 20.9 0.78% 1.04 ± 0.06

Isotope Measured Pu 
Vector

Measured Pu 
Vector Relative 

Error

Simulated Pu 
Vector S/Ea

239Pu 95.22% 0.1% 95.75% 1.01
240Pu 4.55% 2.2% 4.05% 0.89
241Pu 0.23% 1.9% 0.20% 0.86
242Pu <0.01% N/A <0.01% N/A
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Maximum Likelihood Calculation

• Likelihood equation:

𝐿 𝑀, 𝐵𝑢, 𝑇𝑆𝐼 𝑟,-. ∝ 𝑓 𝑟,-.|𝑀, 𝐵𝑢, 𝑇𝑆𝐼 = ∏123
4 3

^_,L`a <b
𝑒𝑥𝑝 − f_,agLhf_,L`a

i

<^_,L`a
i

• Log-likelihood equation:

𝐿𝑜𝑔 𝐿 𝑀,𝐵𝑢, 𝑇𝑆𝐼 𝑟,-. = ∑1234 𝑙𝑜𝑔 3
^_,L`a <b

− f_,agLhf_,L`a
i

<^_,L`a
i

• Variance in the log-likelihood:

𝜎klm k< = ∑1234 f_,agLhf_,L`a
^_,L`a
i

<
× 𝜎1,,-.< + 𝜎1,.8,<
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Maximum Likelihood Results – MURR
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Reactor Model Log-Likelihood Value b
Predicted Burnup 

(GWd/MTU)
Predicted Time Since 

Irradiation (days)
MURR +29.5 ± 1.1 1.02 295
NRX +25.3 ± 3.0 1.03 208

MAGNOX +13.2 ± 5.7 0.73 0
PWR (3.4%) -6.02 ± 8.71 3.91 1381

PWR (4.45%) -8.88 ± 10.2 ≥ 3.90 1196
PWR (2.35%) -12.7 ± 10.2 3.10 1202

PHWR -14.7 ± 13.8 1.02 360
HFIR -166 ± 28 4.40 1790
FBR -1.52 × 105 ± 2.02 × 104 ≥ 4.73 0

a True Bu = 0.97 ± 0.03 GWd/MTU, True TSI = 318 days
b Maximum possible log-likelihood is 29.7

Results of the Maximum Likelihood Analysis for the MURR Irradiated Material a
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Task 3: Maximum Likelihood Results – HFIR
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Reactor Model Log-Likelihood Value b
Predicted Burnup 

(GWd/MTU)
Predicted Time Since 

Irradiation (days)
HFIR +19.5 ± 4.6 4.29 1827

MURR -46.6 ± 12.8 4.16 1700
NRX -52.5 ± 12.5 4.13 1590

MAGNOX -59.5 ± 13.3 3.00 421
PWR (2.35%) -86.7 ± 21.0 ≥ 5.31 1705

PHWR -129 ± 32 ≥ 4.35 2308
PWR (3.4%) -284 ± 26 ≥ 5.01 0

PWR (4.45%) -5.27 × 103 ± 1.38 × 102 ≥ 3.90 0
FBR -6.39 × 105 ± 1.05 × 104 ≥ 4.73 0

a True Bu = 4.36 ± 0.28 GWd/MTU, True TSI = 1601 days
b Maximum possible log-likelihood is 28.5

Results of the Maximum Likelihood Analysis for the HFIR Irradiated Material a


