MTV Student Virtual Research Symposium

Hammer: a flexible research framework for radiation transport solvers

June 11 2020

Kyle Beyer University of Michigan Department of Nuclear Engineering and Radiological Sciences PhD, Year 1 Prof. Brian Kiedrowski

Evan Gonzalez, Noah Kleedtke, Aaron Tumulak, Emily Vu, Avery Grieve, Thomas Huster, Eric Pearson, Matan Gottesman, Lincoln Johnston, James Pelkey, Joseph Donato, Julien Faro, Kayce Duggan, Jeremy Eshbaugh

Motivation and Mission Relevance

Computational radiation transport tools

- model complex radiation transport scenarios to support numerous applications including the design and analysis of radiation detectors, nuclear reactors, shielding and criticality safety, and numerous others
- Typically grouped into two classes: deterministic and Monte Carlo
 - Deterministic transport is fast, but requires discretization in space, direction, and energy
 - Monte Carlo does not require discretization and is very accurate, but is usually slower

Our goal: Develop an open source framework to design novel radiation transport techniques encompassing both deterministic and Monte Carlo transport to provide a flexible tool for researchers to rapidly prototype novel ideas

Hammer is developed, maintained, and managed by students!

Why does Hammer exist?

Production codes

- Fast and well validated, and ideal for production analyses
- Steep learning curve to test new ideas that require modifying the source
- Long history of these products leads to managing around legacy coding practices

Hammer

- Captures complexity of realworld nonproliferation problems
- Easy to add new features
- Modern software engineering best practices
- Educational platform for modern SQA

Research/test codes

- Very simple problems
- Disposable; only used to test one new algorithm/idea without broader context
- Not fully featured

What technologies does Hammer use?

We use:

- object-oriented c++17
- cross-platform CMake build system
 - Windows, MacOS, Linux, CAEN Linux server
- git version control; currently hosted on Github
- unit testing & continuous integration
 - Travis CI, CodeCov, Catch2
- supports threading (MPI support in future)
- Doxygen documentation
- Paraview output support
- human-readable xml interface

< 🗙	Code owner review required Waiting on code owner review from agtumulak. Learn more.	Show all reviewers
R	1 pending reviewer	~
0	All checks have passed 5 successful checks	Hide all checks
~	DEP — All dependencies are resolved	
~	Travis Cl - Branch Successful in 18m — Build Passed	Details
~	Travis CI - Pull Request Successful in 18m — Build Passed	Details
~	codecov/patch — 100.00% of diff hit (target 42.06%)	Details
~	codecov/project — 42.06% (+0.00%) compared to f5e08aa	Details

⊲materials>

</cartesian_mesh>

/meshes

-material name="test mat" density="1.0">

Human-readable interface

human-readable xml interface, parsed with pugixml

<nuclide name="h1" frac="0.5"/> </material> /materials estimators <estimator name="total_flux_tl" type="flux" method="track length" apply="my_rectangular_mesh" particle="neutron" output_format="vtk"> </estimator> <estimator name="total_flux_col" type="flux" method="collision" apply="my_rectangular_mesh" particle="neutron" output_format="vtk"> /estimator /estimators <surfaces> <sphere name="test_sphere_1" x0="0.0" y0="0.0" z0="0.0" rad="1.0"/> <sphere name="test sphere_2" x0="0.0" y0="0.0" z0="0.0" rad="2.0"/> </surfaces <output path="../output/" /> cells <cell name="test_cell_1" material="test_mat"> <surface name="test_sphere_1" sense="-1"/> <variance_reduction type="forced collisions" roulette="1"/> </cell <cell name="test_cell_2" material="test_mat"> <surface name="test_sphere_1" sense="+1"/> <surface name="test_sphere_2" sense="-1"/> <variance_reduction type="forced collisions" roulette="1"/> cell /cells meshes <cartesian_mesh name="my_rectangular_mesh" bins='1000000'> <x min="0" max="0.05" bins="100" /> <y min="0" max="0.05" bins="100" /> <z min="0" max="0.1" bins="100"/>

```
A CAN Security Administra
```

What can Hammer do?

Fixed-source calculations:

- 3D Monte Carlo; multigroup and continuous energy
- 2D SN; forward and adjoint
- neutrons and photons

Mesh based calculations:

- structured rectangular, cylindrical and spherical
- unstructured tetrahedral
- 1D/2D/3D with rotations
- used for estimators, variance reduction, SN

What else can Hammer do?

• Full-featured Monte Carlo variance reduction:

- importance splitting, rouletting
- weight windows
- exponential transform
- forced collisions
- forced flight (DXTRAN)

• Monte Carlo estimators:

- track length/collision flux in volume
- flux/current on surface
- Flux at a point
- bin over energy, group, collision order, time, angle, spatial mesh, ...
- flux tally modifier for reaction rate

What will Hammer be able to do?

Ongoing feature projects:

- fully featured CSG: lattices, regions, complements, ...
- transport in stochastic media
- Hybrid MC/deterministic methods, including FW-CADIS
- in-house physics event generator for fission, radioactive decay, ...

Up next:

- k/α-eigenvalue
- differential operator sampling for sensitivity analysis
- charged particle transport
- neutrino transport
- depletion
- MPI
- MCNPX-PoliMi style particle tracking for custom analysis of detector problems

Hybrid Methods: Direct Coupling

- Collaboration with deterministic solver, NC State code, THOR
 - Highly parallel ${\rm S}_{\rm N}$ transport solver on an unstructured tetrahedral mesh
 - suffers from numerical artifacts called "ray effects"
- Hammer provides nth-order collided source to the THOR
- Coupling mitigates ray effects

MTV Student Virtual Research Symposium

Hybrid Methods: FW-CADIS

10

beykyle@umich.edu

NIVERSITY OF

MTV and National Lab Impact

We have summer 2020 internships/ongoing collaborations with:

- LANL (x2)
 - advanced forced flight variance reduction, hybrid methods, unstructured mesh, critical experiment design
- ORNL (x2)
 - expand variance reduction and sensitivity analysis capabilities of Shift
- LLNL (x2)
 - transport in stochastic media
- SNL (x1)
 - transport in stochastic media

Conclusions and Impact

Hammer will:

- support the development of next-generation monitoring technologies by providing the tools to design and model them
- make it easier to tailor the solver to a specific application/experiment
- provide hands on training for the next generation of computational physicists in in-demand software engineering and project management skills

Contact: Prof. Brian Kiedrowski (bckiedro@umich.edu)

Hammer: a modular design

13

beykyle@umich.edu

Hammer: a modular design

beykyle@umich.edu

Hammer: a modular design

1. J. C. Wagner and A. Haghighat. "Automated Variance Reduction of Monte Carlo Shielding Calculations Using the Discrete Ordinates Adjoint Function," *Nuclear Science and Engineering*, 128, pp. 186–208 (1998).

15

beykyle@umich.edu

Acknowledgements

Massachusetts							
Te	ech	no	e o log	от ЈУ			

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920

