

High-precision Absolute Reactor Antineutrino Flux Measurement using PROSPECT-I Data

2023 MTV Workshop

March 21, 2023

Paige Kunkle

Graduate student, Boston University Professor Jelena Maricic University of Hawaii at Manoa

Introduction and Motivation

- Neutrinos are produced from beta decay of fission fragments inside reactor core
- They interact extremely weakly with matter
 - Cannot be shielded or spoofed
 - Can be used to monitor nuclear reactor status, thermal power, and fissile inventory in real time with a suitable detector
- We need precise information about neutrino flux
 - Measured flux and predicted flux do not agree
 - Are flux predictions overestimated?

"Reactor Antineutrino Anomaly"

Mission Relevance

- Short-baseline neutrino detectors offer:
 - Less intrusive option to verify reactor operations
 - Reliable + constant monitoring technology
- We can accomplish this by precisely measuring neutrino flux from a research reactor
 - Pure ²³⁵U core enables exploration of measured flux deficit.

on/MeV 5'2 5'0

Antineutrinos/fissi

- Directly translates to monitoring commercial reactors
- Uncertainties in existing neutrino flux production models may be improved based on high precision measurement of ²³⁵U flux

Technical Approach

Precision Reactor Oscillation and Spectrum Experiment

Segmented liquid scintillator target

- Inverse beta decay (IBD) interactions
- Double PMT readout

High Flux Isotope Reactor (HFIR)

- 93% ²³⁵U fuel
- 85 MW thermal power
- Compact core
- High flux in the few MeV range

Defining Absolute Flux

- $\sigma_f^{obs} = \frac{N^{obs}}{\frac{P_{th}}{\langle E_f \rangle} \frac{N_p}{4\pi L^2} \epsilon}$
- We will compute the observed IBD cross section per fission:
 - Total uncertainty on the flux measurement (σ_f^{obs}) is determined by propagating the uncertainties of the factors in the expression

	Parameter	Value	Uncertainty (%)
Statistical	Number of observed IBD candidates (N ^{obs})		
Background systematics	Background subtraction		
Reactor systematics	Reactor thermal power (P_{th})		
	Energy released per fission (E_f)		
Signal detection systematics	Number of protons in fiducial volume (N_p)		
	Baseline (L)		
	Signal detection efficiency (ϵ)		
	Total (σ_f^{obs})		<2.5%

Determining number of fissions and targets

- Reactor thermal power: 2.14% uncertainty
 - Sensors in the primary coolant loop monitor the temperature and flow rate of coolant as it transports heat out of the core.

3 inlet + 3 outlet temperature sensors (RTDs) for each system 3 flow rate sensors (Venturi tubes) for each system

 \rightarrow Could improve to 1.4% uncertainty.

- $\sigma_{f}^{obs} = \frac{N^{obs}}{\begin{pmatrix} P_{th} \\ \langle E_{f} \rangle \end{pmatrix}} \frac{\langle N_{p} \rangle}{4\pi L^{2}} \epsilon$
- Target density: ~1% uncertainty
 - Average number of protons in some volume within which we know the IBD detection efficiency well.

σ_{f}^{obs} Signal detection efficiency: <2% uncertainty

- PROSPECT detects neutrinos via inverse beta decay (IBD)
 - Prompt signal (e^+) provides good energy estimate of incident neutrino
 - Delayed localized neutron capture signal $(n {}^{6}Li)$
- Event selection achieved using selection cuts
 - Event timing, energy, distance, fiducial volume, pulse shape discrimination (PSD)
 - Compare data to simulation to calculate efficiency of each cut
- Optimize the cuts in order to:
 - Maximize effective statistics

0.15

0.1

INIVERS

N^{obs}

Prompt PSD

Next Steps

- Quantify impact of dead material on detection efficiency
 - Calculate uncertainty on ⁶Li capture fraction

140	141	142	143	144	145	146	147	148	149	150	151	152	153
126	127	128	129	130	131	132	133	134	135	136	137	138	139
112	113	114	115	116	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	104	105	106	107	108	109	110	111
84	85	86	87	88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	76	77	78	79	80	81	82	83
56	57	58	59	60	61	62	63	64	65	66	67	68	69
42	43	44	45	46	47	48	49	50	51	52	53	54	55
28	29	30	31	32	33	34	35	36	37	38	39	40	41
14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Non-fiducial segments

Schematic of P-II detector

- Optimize PROSPECT-II design and external calibration strategy for flux measurement
 - Apply measurement procedure to P-II data
 - Compare to applications-oriented neutrino detectors

Dead (excluded) segments

Expected Impact

- Goal: Make a world-leading precision measurement of ²³⁵U neutrino flux with <2.5% uncertainty
- Contribute to the global reactor flux picture and reactor neutrino literature

MTV Impact

- Current collaborations with national labs:
 - ORNL, LLNL, BNL, NIST
- Site visits:
 - HFIR complex at ORNL
- Past conferences:
 - INMM & ESARDA Joint Annual Meeting
 - Science, Peace, Security
 - Neutrino
 - APS DNP + DPF
- Upcoming publications:
 - The Potential of Antineutrino Detectors for Remote Reactor Monitoring, Discovery and Exclusion Applications. *The Nonproliferation Review*, 2023. A. Bernstein, F. Dalnoki-Veress, J. Hecla, P. Kunkle, J. Learned. *(under review).*

https://standards.ornl.gov/wp-content/themes/sparkling-child/img/ORNL%20Two-line_gree

ORNL Two-line whit

- Technology collaborations:
 - Drexel, GIT, University of Hawaii, IIT, Susquehanna, Temple, University of Tennessee, University of Waterloo, University of Wisconsin, Yale University

3/10/23, 11:54 A

Conclusion

- These updates demonstrate a path toward significant improvements in decreasing piecewise uncertainty of the absolute flux measurement
- Calculate and optimize signal detection efficiency according to required event selection cuts
- Final measurement will demonstrate how well an above-ground detector can monitor the power of a research reactor
- Supports NNSA mission by using precision monitoring technology to prevent diversion of weapons-usable material from nuclear reactors

Acknowledgements

The Consortium for Monitoring, Technology, and Verification would like to thank the DOE-NNSA for the continued support of these research activities.

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920

What does an absolute flux measurement report?

- Can we look at a single isotope (²³⁵U) and report the **number of antineutrinos released per fission**?
 - No \rightarrow IBD experiments only detect antineutrinos above the IBD threshold ($\frac{1}{3}$ of total neutrino flux)
- Instead we can report **IBD cross section per fission** σ_f :

$$\sigma_{f} = \int S(E_{\nu})\sigma(E_{\nu})dE_{\nu}$$
IBD cross section per fission IBD cross section

 $\bar{\nu_e}$ spectrum from reactor

- We can also report the **ratio** of **observed IBD rate** σ_f^{obs} to the **predicted IBD rate** σ_f^{pred} using the most recent ²³⁵U absolute reactor neutrino flux prediction: $R = \frac{\sigma_f^{obs}}{\sigma_f^{pred}}$
 - → Predicted reactor $\bar{\nu}_e$ energy spectra based on new measurements of β spectra from ²³⁵U performed at a research reactor at Kurchatov Institute in Russia
- Expectation: Observed flux and predicted flux be consistent within error bars

Deriving σ_f^{obs}

Given $\bar{\nu}_{\rho}$'s emitted isotropically from fission products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu. The number of $\bar{\nu}_e$ with energy E_{ν} emitted from a reactor at time t can be predicted using: $\frac{d^2\phi(E_{\nu},t)}{dE_{\nu}dt} = \frac{P_{th}(t)}{\sum_i f_i(t)\langle E_f \rangle_i} \sum_i f_i(t) S_i(E_{\nu}) c_i^{NE}(E_{\nu},t) + S_{SNF}(E_{\nu},t)$ (1)

Where the sums are over ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu.

- P_{th} : Reactor thermal power
- f_i : Fission fraction due to isotope i
- $\langle E_f \rangle_i$: Average thermal energy released per fission
- $S_i(E_{\nu})$: $\bar{\nu}_e$ energy spectrum per fission •
- c_i^{NE} : Correction to the energy spectrum due to reactor non-equilibrium effects using long-lived fission fragments
- S_{SNF} : Contribution from spent nuclear fuel (SNF)

Simplifying for PROSPECT with only ²³⁵U fission over a specific runtime t and negligible SNF contribution gives the differential $\bar{\nu}_{\rho}$ rate to be

$$\frac{d\phi(E_{\nu})}{dE_{\nu}} = \frac{P_{th}}{\langle E_f \rangle} S(E_{\nu}) c^{NE}(E_{\nu})$$
 (2)

The total number of detected IBD events N^{obs} can be estimated as

$$N^{obs} = \frac{N_p}{4\pi L^2} \epsilon \int P_{sur}(E_{\nu}, L) \sigma_{IBD}(E_{\nu}) \frac{d\phi(E_{\nu})}{dE_{\nu}} dE_{\nu}$$
(3)

Plugging in (2) to (3) gives

$$N^{obs} = \frac{P_{th}}{\langle E_f \rangle} \frac{N_p}{4\pi L^2} \epsilon \int S(E_\nu) c^{NE}(E_\nu) P_{sur}(E_\nu, L) \sigma_{IBD}(E_\nu) dE_\nu \quad (4)$$

- $\sigma_{IBD}(E_{\nu})$: IBD cross section
- L: Distance between detector center and reactor core
- $P_{sur}(E_{\nu},L)$: Survival probability due to neutrino oscillation
- N_p : Number of target protons
- ϵ : IBD signal detection efficiency

Redefining $S(E_{\nu})$ to absorb $P_{sur}(E_{\nu},L)$ and $c^{NE}(E_{\nu})$ terms and dividing on both sides by the prefactor gives

$$\frac{N^{obs}}{\frac{P_{th}}{\langle E_f \rangle} \frac{N_p}{4\pi L^2} \epsilon} = \int S(E_\nu) \sigma_{IBD}(E_\nu) dE_\nu = \sigma_f^{obs}$$

which is the observed IBD cross section per fission we will report.

Inverse Beta Decay (IBD)

Proton density: Combustion measurements

Gases are mechanically

homogenized

detector The PerkinElmer 2400 CHN Elemental Analyzer Steady State Readout H₂0 CO₂ Scaling factor (k-factors) relates measured readout to density determined relative to a known standard sample (e.g. acetanilide) Measurement sequence

- 'Blanks' to determine baseline
- Reference samples to determine calibration
- 2nd reference sample to validate calibration
- Samples interspersed w/ conditioning runs

Discrepancy between standard and reference (both acetanilide) Suggests problem with calibration curve - standard practice is to adjust normalization not shape Possible systematic at the % level

catalysts aid the process

