

Introduction and **Mission Relevance**

- Antineutrino (AN) detection is a proposed method for monitoring nuclear reactors for plutonium production and diversion
- Antineutrinos are produced in large numbers in the fission process and can be detected in detectors of a variety of scales and distances
- Accuracy of reactor antineutrino monitoring relies on the ability to accurately simulate the antineutrino source term
- Determine how reactor simulation model complexity impacts the antineutrino source term

Technical Approach

- Simulate 160 MWt NuScale LWR
- Simulated the antineutrino source term for four major isotopes using four models
- Lattices
- 2D
- 3D Fixed TH
- **3D** Full

Increasing Complexity

• Use isotopic fission rate, antineutrino spectra [1] and inverse beta decay (IBD) detection cross section [2] to calculate detected neutrino rate

Sensitivity of the Antineutrino Source Term on Nuclear Reactor Simulations of Varying Levels of Complexity **Douglas Woodward** Undergrad, University of Michigan Igor Jovanovic, Brendan Kochunas University of Michigan

order of 1%.

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **DOE-NNSA award number DE-NA0003920**

Impacts

 Quantification of the trade-off between simulation complexity and accuracy that may impact nuclear safeguards and verification using AN detection • Potential impact on basic research in the neutrino sector

Conclusion and Next Steps

 Higher complexity simulations yield higher accuracy in predicting AN source

 Accuracy does not necessarily vary monotonously over the operating cycle • Evaluate the impact in more complex scenarios such as refueling and diversion

• Determine the impact on safeguards variables derived from practical detector measurements

[1] P. Vogel and J. Engel, Phys. Rev. D 39. 3378-3383 (1989) [2] A. Bernstein, N. Bowden, B. L. Goldblum, P. Huber, I. Jovanovic, and J. Mattingly, Rev. Mod. Phys. 92, 011003 (2020).

