

Introduction and Motivation

Determination of optimal time temperature profile (TTP) for thermoluminescent dosimeters (TLDs) based on minimum detectable dose (MDD)

- Improved accuracy in personnel & environmental dose measurements
- Precision in radiation health effects research • Characterization of the lowest dose a system is
- capable of measuring • Discrimination of small experimental changes

Mission Relevance

Monitoring dose rates for radiation protection

- Occupational radiation protection
- Quality assurance of radiation facilities
- Low level radioactive waste monitoring
- Public safety enhanced by establishing confidence in the accuracy of low level natural background radiation measurements
- Improved ability to counter nuclear smuggling through detection of radioactive and nuclear materials at low dose rates

TTP	Preheat Temp (°C)	Preheat Time (s)	Acquire Heating Rate (°C s ⁻¹)	Acquire Temp (°C)	Acquire Time (s)	Anneal Temp (°C)	Anneal Time (s)	Lowe Detecti Limit (mGy
1	50	0	15	300	20	300	0	0.93
2	50	10	15	300	20	300	0	0.91
3	50	0	15	300	20	300	10	2.48
4	50	10	15	300	20	300	10	0.58
5	50	10	12	260	26.7	300	10	1.05
6	50	10	12	260	20	300	10	0.58
7	50	0	5	300	60	300	0	0.71
8	50	0	15	300	20	300	20	1.28

Table 1. Time Temperature Profiles (TTPs) Corresponding to Various Minimum Detectable Doses (MDDs)

Table 1 displays eight different TTPs which were created in order to test the influence of preheat time, acquire heating rate, acquire temperature, acquire time, and anneal time on the Lower Detection & Lower Determination Limits.

Influence of Time Temperature Profiles on the Minimum Detectable Dose of **Thermoluminescent Dosimeters**

Katie M Olivas (Senior) Jordan D Noey, Mohammad O Fahim, Kimberlee J Kearfott University of Michigan

N1126. *Figure 1. Cs*-137 Irradiator experimental set up 1) Irradiation Conduction Band **Electron Trap** Valence Band lonizing Radiation

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **DOE-NNSA award number DE-NA0003920**

- Precise dose measurements for radiation experiments

- Verification of optimized TTPs through additional tests
- Further testing on parameters that led to fluctuations

Contact Email: kolivas@umich.edu

National Nuclear Security Administration