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Introduction and 
Motivation

Solutions to large linear systems typically involve 
computationally expensive numerical solvers 
● Costly for many solutions at different 

configurations (uncertainty quantification (UQ), 
near-critical analysis, core optimization)

● Common physics-based perturbative methods 
applied require intuition and expertise to apply 
properly

Mission Relevance
Computational neutron transport is important to 
detection and monitoring systems design 
● Used in modeling of SNM-containing systems in 

nonproliferation and treaty verification
● Optimization of next-generation energy, fuel 

systems, and criticality experiments
● Applicable to UQ and optimization in the 

validation of simulation and nuclear data

Theory

MTV Impact
Developed passion for computational physics through 
research experiences
● Learned the basics of software development
● Explored computational methods for neutron 

transport 
● Improved writing and public speaking skills 
● Advisors provided critical expertise and support

Expected Impact
Rapid solution of 𝒌𝒌-eigenvalue problems for multi-
configuration applications
● Applicable to UQ, near critical analysis, optimization, 

etc.
● Reduction in computational time and cost with 

reliable approximations
● Reduction in the number of high-fidelity calculations 

required

Next Steps
Multi-group diffusion and empirical interpolation 
method for nonaffine perturbations
● Greedy training subspace construction
● C5G7 benchmark with density perturbation
● Parallelization and results generation on an HPC
● Implementation in the discrete ordinates solver in 

Hammer
● Exploration of applications

Results

Conclusion
RBMs offer substantial increases in accuracy compared 
to perturbation theory with comparable speedup
● The target space was well approximated with two 

dimensions but L2 loss converged to zero with each 
additional POD mode

● Affine speedup remained constant with each 
additional POD mode, while nonaffine decreased

● Affine RBMs computationally outperformed nonaffine 
RBMs with an increasing mesh size

● Perturbation of Σ𝑎𝑎0 and Σ𝑎𝑎2 had negligible impact on 
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

● Observed effect of perturbation of Σ𝑎𝑎1 and Σ𝑓𝑓1 on 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

Figure 2. L2 norm of 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

versus number of POD modes in the RBM.
Figure 3. Speedup of affine and nonaffine RBM 

emulators versus emulator POD mode

● Increase in accuracy with each additional POD 
mode

● Almost the entire target distribution can be 
reconstructed with 2 dimensions.

● Distinct speedup decrease for each 
additional nonaffine emulator

● Affine emulator speedup remains constant
● Almost all emulators exceed 100x speedup 

over the finite difference solver.
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𝑴𝑴 𝜇𝜇 | ⟩𝜓𝜓 𝜇𝜇 = 𝜆𝜆 𝜇𝜇 𝑭𝑭 𝜇𝜇 | ⟩𝜓𝜓(𝜇𝜇)
● Where 𝜇𝜇 is a vector of parameters 

(𝐷𝐷, Σ𝑎𝑎,Σ𝑓𝑓, or 𝜈̅𝜈)
● Solved through numerical methods
● This work utilizes a mesh-centered finite 

difference solver
● 𝑴𝑴 and 𝑭𝑭 are 𝑁𝑁 × 𝑁𝑁 and flux, | ⟩𝜓𝜓 , is 𝑁𝑁
● 𝑁𝑁 is the number of mesh nodes

Parametric One-speed Neutron Diffusion

Reduction of order from 𝑵𝑵 to 𝑹𝑹 where 𝐑𝐑 ≪ 𝑵𝑵
● Calculate 𝑇𝑇 training forward and adjoint fluxes 

with a high-fidelity solver 
● Reduce training subspace with Proper 

Orthogonal Decomposition (POD) to 𝑅𝑅 fluxes
● Define 𝑴𝑴𝑡𝑡 𝜇𝜇𝑡𝑡 and 𝑭𝑭𝑡𝑡 𝜇𝜇𝑡𝑡 for each target 

point such that 𝑴𝑴𝑖𝑖,𝑗𝑗
𝑡𝑡 = 𝜓𝜓𝑖𝑖 𝑴𝑴 𝜇𝜇𝑡𝑡 𝜓𝜓𝑗𝑗 and 

𝑭𝑭𝑖𝑖,𝑗𝑗𝑡𝑡 = 𝜓𝜓𝑖𝑖 𝑭𝑭(𝜇𝜇𝑡𝑡) 𝜓𝜓𝑗𝑗
● Solve 𝑅𝑅 × 𝑅𝑅 eigenvalue problem for �𝝀𝝀 ≈ 𝝀𝝀, 𝑐𝑐

𝑴𝑴𝑡𝑡 𝜇𝜇𝑡𝑡 𝒄𝒄 = 𝜆̃𝜆𝑭𝑭𝑡𝑡 𝜇𝜇𝑡𝑡 𝒄𝒄
● Reconstruct flux with a Galerkin Projection

The Reduced Basis Method (RBM)

Offline Stage: Training Space Construction
● 45 × 45 Mesh-centered finite difference 

(2025 mesh elements)
● Mesh grid of 4 perturbed parameters (81 

training points)
● Case 1: Σ𝑎𝑎0 = 0.130 and Σ𝑎𝑎1 , 𝜈̅𝜈Σ𝑓𝑓1, Σ𝑎𝑎2 =

0.10 (Perturbation Theory (PT))
● Case 2 – 5: Σ𝑎𝑎0 ∈ 0.125, 0.130, 0.135

and Σ𝑎𝑎1 , 𝜈̅𝜈Σ𝑓𝑓1, Σ𝑎𝑎2 ∈ 0.095, 0.100, 0.105
(RBM with 1 – 4 POD modes)

Online Stage: Target Calculations
● 500 randomly sampled points from a 4-

dimensional box in parameter space
● 494 sampled outside the training space
Mesh Size Scaling Analysis
● Finite difference and affine and nonaffine 

RBM with 4 POD modes
● 5 mesh sizes: 324, 1296, 2916, 5184, 

8100

Emulator Training and Target Calculations

Figure 1. A reactor quadrant consisting of 4 regions 
with reflective boundaries at the bottom and left 

faces and vacuum boundaries at the top and right 
faces

ID Name 𝐷𝐷 (𝑐𝑐𝑐𝑐) Σ𝑎𝑎 (𝑐𝑐𝑚𝑚−1) 𝜈𝜈Σ𝑓𝑓 (𝑐𝑐𝑚𝑚−1)
0 Fuel 1 + Rod 0.4 Perturb Perturb
1 Fuel 1 0.5 Perturb 0.10
2 Fuel 2 0.4 Perturb 0.10
3 Reflector 0.3 0.01 ~0

Table 1. Material composition for each region in 
Figure 1
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Figure 4. Speedup of affine and nonaffine RBM 
emulators with 4 POD modes versus mesh size

Figure 5. Effect of each parameter on 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

● Affine RBMs speedup scales more favorably 
with mesh size than nonaffine RBMs.

● Negligible impact of perturbing Σ𝑎𝑎0 and Σ𝑎𝑎2
● Positive relationship between Σ𝑓𝑓1 and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
● Negative relationship between Σ𝑎𝑎1 and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒


	Fast Emulation of the Neutron Diffusion Equation using the Reduced Basis Method (RBM)�Patrick A. Myers �Senior� Connor C. Craig, Kyle Beyer, Brian C. Kiedrowski�University of Michigan

