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Hybrid optical neutrino detection

Large-volume optical neutrino detectors have a long history
Traditionally,

• Cherenkov detectors have directional reconstruction

• Scintillator detectors have precision energy reconstruction

Decades of work leading to hybrid technology:

• Low energy threshold

• Balance between directionality and calorimetry

Our design: Theia at 10-100 kt scale

• Solar neutrinos and DSNB

• Fundamental physics topics

• Geo- and reactor antineutrinos
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Fig. 1 The Theia detector. Top panel: Theia-25 sited in the planned fourth DUNE cavern; Lower left panel: an interior
view of Theia-25 modeled using the Chroma optical simulation package [27]; Lower middle panel: exterior view of Theia-100
in Chroma; Lower right panel: an interior view of Theia-100 in Chroma. In all cases, Theia has been modelled with 86%
coverage using standard 10-inch PMTs, and 4% coverage with LAPPDs, uniformly distributed, for illustrative purposes.

are practically undetectable as much of the energy from
the neutrino electron scattering reaction is invisible.

Organic liquid scintillators (LS) have been used to
enhance sensitivity for below Cherenkov threshold par-
ticles. LS is currently being used in the KamLAND,
Borexino, and SNO+ detectors, and is planned for use
in the JUNO detector now under construction. While
this is very effective at increasing sensitivity at low en-
ergies, it comes at the loss of the directional sensitivity
and multi-track resolution that is a hallmark of WC

detectors. Use of organic LS also introduces issues of
high cost, short optical transmission lengths, and un-
desirable environmental and safety problems.

The recent development of water-based liquid scin-
tillator (WbLS) [22] has the potential to alter this sit-
uation. By introducing a small amount (typically 1%-
10%) of liquid scintillator into water, the liquid yield
can be adjusted to allow detection of particles below
Cherenkov threshold while not sacrificing directional
capability, cost, or environmental friendliness. First de-

EPJC 80 416 (2020) arXiv:1911.03501



R&D for hybrid optical detectors

Need to reconstruct the neutrino interaction from “hits”
• Energy resolution improves with # of hits
• Position resolution improves with # of hits
• Direction resolution improves with purity of Cherenkov hits

Cartoons from Michi Wurm
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R&D for hybrid optical detectors at Berkeley

Expansive campaign to make use of:
• Modern chemical synthesis techniques
• State-of-the-art photodetectors
• Novel spectral sorting technology

...to achieve high-purity Cherenkov selection

WbLS

of gadolinium into the WbLS has been tested and the results are
very promising. Current samples of �0.5% Gd in WbLS are available
for in-lab tests; however loading parameters for large-scale produc-
tion will require modification depending on the experimental
needs. Eventually a larger WbLS (with and without metallic ions)
demonstrator, at the scale of few tons, will be built for prototype-
studies of anti-neutrinos from a nuclear reactor.
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Fig. 4. Samples of water-based liquid scintillator samples illuminated by ultraviolet light. From left to right, samples are pure LAB based liquid scintillator, 10%-LAS loading

in water with 3 g/L PPO, 10%-LAS loading in water with 3 g/L Carbostyril-124, and pure water with 3 g/L Carbostyril-124. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

400

450

bkg

350

H2O_w/out_Cs137
10%LAS_with_Cs137
H2O_with_Cs137

250

300

200C
ou

nt
s

100

150

50

0
0 200 400 600 800 1000

Channel

Fig. 5. Scintillation response from WbLS. The liquids were excited by external Cs137.
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Fig. 6. Fluorescence response from scintillator liquids. The liquids were excited by

250 nm laser with a fixed intensity and observed to produce the plotted radiation.

The red curve is for LAB with PPO and the blue is the WbLS with PPO (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

M. Yeh et al. / Nuclear Instruments and Methods in Physics Research A 660 (2011) 51–56 55 LAPPDs Dichroicons
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Mission relevance

Facilitates new capabilities for nuclear reactor discovery and exclusion
Development of new technologies for monitoring and verification of reactor operations for

proliferation detection

Preventing nuclear weapons proliferation and reducing the threat of nuclear and radiological
terrorism around the world are key U.S. national security strategic objectives that require

constant vigilance.
NNSA’s Office of Defense Nuclear Nonproliferation works globally to prevent state and

non-state actors from developing nuclear weapons or acquiring weapons-usable nuclear or
radiological materials, equipment, technology, and expertise.
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Water-based liquid scintillator

Hybrid reconstruction has been utilized by e.g. LSND and MiniBooNE
But energy range was much higher (more favorable C/S ratio), and there are hurdles to
scalability:
• Scintillator is relatively costly
• Optical effects play a larger role

To go larger, go WbLS: start with water, mix in scintillator as needed
• But need to know optical properties, timing, light yield...

of gadolinium into the WbLS has been tested and the results are
very promising. Current samples of �0.5% Gd in WbLS are available
for in-lab tests; however loading parameters for large-scale produc-
tion will require modification depending on the experimental
needs. Eventually a larger WbLS (with and without metallic ions)
demonstrator, at the scale of few tons, will be built for prototype-
studies of anti-neutrinos from a nuclear reactor.
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Fig. 5. Scintillation response from WbLS. The liquids were excited by external Cs137.
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Fig. 6. Fluorescence response from scintillator liquids. The liquids were excited by

250 nm laser with a fixed intensity and observed to produce the plotted radiation.

The red curve is for LAB with PPO and the blue is the WbLS with PPO (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

M. Yeh et al. / Nuclear Instruments and Methods in Physics Research A 660 (2011) 51–56 55

M. Yeh et al NIM A 660 2011 5% WbLS in 2019
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Proton light yield measurement

Fast neutrons constitute inverse β-decay background via elastic np scattering

“Double time-of-flight” method: Pulsed deuteron beam on Be target + PID-capable secondary
detectors
Collaboration with Bay Area Neutron Group (BANG — UCB/LBNL)

• Brown et al, Jour. Appl. Phys. 124, 045101 (2018)

Protons excited via n-p elastic scattering internal to measurement sample
Two kinematic measures of neutron energy (before/after scattering)

• Three measures of proton energy (under single-scatter hypothesis)

• Enforce consistency with beam-neutron hypothesis
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Proton light yield measurements - Results
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Electron / α light yields

Benchtop light-yield setup

• GEANT4-based Monte Carlo assuming Birks’ law

• Global detection efficiency calibrated used Cherenkov light

• Model parameters found via MC-data matching
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Time profile measurements

Radioactive source deployed above sample, contained in acrylic vessel
Vessel is coupled to LAPPD, forced-operating in single-photon regime

Joint measurement with conventional PMT

Signals digitized via CAEN V1742 @ 5 GHz and processed offline
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Time profile measurements - Results
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−0.01
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A1 [%] 94.8+0.1
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These numbers feed directly into particle-ID studies — paper in preparation!
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Dichroicon deployment

A different approach: use dichroic filters to
manually affect cuts on wavelength
In CHESS, demonstrate different C/S
proportions for different radiation sources

Kaptanoglu et al. Phys. Rev. D 101 072002 (2020)

arXiv:1912.10333
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Dichroicon deployment
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Paper in preparation. Figures courtesy of S. Naugle.
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The Eos Project

Solid R&D foundation, but need demonstration in a real detector
Eos: https://nino.lbl.gov/eos/, JINST 18 P02009 (2023), arXiv:2211.11969
• Explicit demonstration of

reconstruction in a hybrid detector
• Validate Monte Carlo model to

support simulations at larger scales
• Act as testbed for new

and novel technologies

• Multi-ton targets
• Water, WbLS, pure LS
• Fast PMTs + dichroicons
• Full waveform digitization ← Extension of CHESS DAQ
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III. EOS DETECTOR DESIGN

EOS will consist of a 4-ton acrylic inner vessel (IV), which can house either a water or scintillator

target. The IV will be viewed by approximately 250 photomultiplier tubes (PMTs) with varying properties to

facilitate an understanding of the dependence of detector performance on the photon detector configuration.

On the lower PMT array, a number of “dichroicons” will be installed, which achieve Cherenkov/scintillation

separation via spectral sorting [26, 42]. The detector assembly will be housed in a stainless steel outer vessel

(OV), with a source deployment mechanism to allow deployment of low-energy radioactive and optical

sources down a central axis. Figure 1 shows the conceptual design of the detector.

FIG. 1. Conceptual design of the Eos detector, showing the different detector components.

Two hundred 8-inch R14688-100 PMTs from Hamamatsu with better than 1-ns time precision will fa-

cilitate Cherenkov photon identification. Two dozen 12-inch R11780 PMTs [43] from Hamamatsu will

offer enhanced light collection on the top array. A combination of 5-inch green-sensitive R6594 PMTs and

high-quantum efficiency R7081-100 10-inch PMTs from Hamamatsu will be used as part of the dichroicon

assembly. Overall, the photocathode coverage of the inner detector volume will be approximately 40%.

The PMT support structure (PSUP) is being constructed to allow flexibility for future upgrades with

additional PMTs, additional dichroicons, and alternative photon detection technology, such as LAPPDs or



MTV impact and Conclusion

Professional advancements:

• Exposure to electronic, chemical, software technologies

• Regular collaboration with LBNL, BNL scientists

• Development of technical skills necessary within NNSA enterprise

Technical advancements:

• WbLS emission time profile

• WbLS light yield, and α,p quenching

• LAPPD characterization

• Eos demonstrator funded and under construction
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