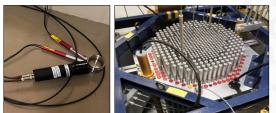
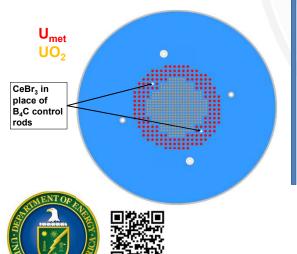


#### Calibration of CeBr<sub>3</sub> Scintillators for Gamma-ray Spectroscopy in a Zero-power Reactor

#### Andrew Lucas<sup>1</sup>

#### 3<sup>rd</sup> Year Undergraduate Student, University of Michigan


Coauthors: F. B. Darby<sup>1</sup>, O. V. Pakari<sup>1</sup>, M. Y. Hua<sup>1</sup>, V. Lamirand<sup>2</sup>, S. D. Clarke<sup>1</sup>, A. Pautz<sup>2</sup>, S. A. Pozzi<sup>1</sup> <sup>1</sup> Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor <sup>2</sup> Laboratory of Reactor Physics and Systems Behaviour, Ecole Polytechnique Fédérale de Lausanne




### Intro and Motivation

- Reactor monitoring is a useful tactic for nonproliferation
- In this work, we plan to analyze in-core reactor data from the CROCUS zero-power reactor
- To calibrate CeBr<sub>3</sub>, we measured <sup>152</sup>Eu in the setup below







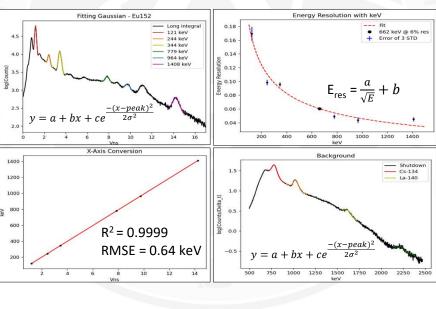
## **Technical Approach**

0.6

0.5 -

0.4 [A] leußis

0.2


0.1

Raw Data - avg

150

- Our <sup>152</sup>Eu data are first in the form of V against ns. Taking the integral of this waveform, we get a value which can be plotted on a histogram
- We then matched the peaks of this histogram (in Vns) using the means of fitted Gaussians, subtracting the Compton continuum underneath, to known peaks of <sup>152</sup>Eu (in keV)

# **Results**



#### **Discussion**

- We found a linear relation between the pulse integral and energy, providing a calibration for future work when analyzing our nuclear reactor data from CROCUS
- As a preliminary in-reactor result, we see that our calibration indicates <sup>140</sup>La and <sup>134</sup>Cs photopeaks. These serve as a measure of recent reactor use, and therefore, possible ways to monitor proliferation

### **Impact**

- Possible future publication on reactor spectroscopy in tandem with organic scintillators
- MTV fosters connection with EPFL
- MTV funded undergraduate fellowship

## Conclusion and Next Steps

- We can successfully calibrate CeBr<sub>3</sub> detectors for in-reactor gamma spectroscopy
- Future work will include:

i) Half-life analysis of <sup>140</sup>La as well as the analysis/calibration of organic scintillators

ii) Reactor noise analysis of organic scintillators and CeBr<sub>3</sub>



This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under DOE-NNSA award number DE-NA0003920