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Introduction and Motivation
• Monitor a zero-power research reactor 

operation from online radiation signals
• Completed work for 3 mW critical
• Found that correlated (γ, γ) data was most 

reliable

• Now distinguish startup/shutdown 
subcritical states from critical operation

• Leverage the time-correlated fission chain 
signal

• Calculate the prompt neutron decay 
constant for several states

CROCUS, EPFL

https://doi.org/10.1109/TNS.2023.3337657
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Mission Relevance

• Characterizing sub-critical state adds to reactor monitoring toolkit
• Verifying sub-critical states can 

corroborate startup and shutdown 
activities

• Refueling or reconfiguration occurs 
during shutdown

• Perturbation in state can indicate 
material changes and defects
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Technical Approach

• Measure CROCUS zero-power reactor
• Hosted by EPFL in Lausanne, 

Switzerland
• Focus on correlated gamma 

emissions based on 
previously published 
critical analysis

CROCUS, EPFL

Fission chain, MTVSingle Fission, MTV



55

Technical Approach: CROCUS Configurations 

800 mm

1×10! n/s PuBe for startup

Organic scintillator location

960 mm

https://doi.org/10.5075/epfl-thesis-8336

• Measure CROCUS zero-power reactor
• 3 mW critical
• Several subcritical states driven by PuBe

https://doi.org/10.5075/epfl-thesis-8336
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Technical Approach
• Assume point kinetics approximation
• Calculate the prompt neutron decay 

constant, ⍺, with power spectral density 
(a.k.a. Cohn-⍺) analysis
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Technical Approach – Pulse-shape Discrimination

• One stilbene detector 
• 20 cm from the edge of the core (in water 

moderator)
• Measuring for 120 minutes at 3 mW critical
• Higher Tail over Total Ratio for neutron 

detections
• Neutrons are classified as upper blue band
• Gamma-rays are classified as lower red 

band
• Two distinct and separate bands
• Neutron band is approximately three orders 

of magnitude less than gamma band
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Results – Cohn-⍺
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Expected Impact

• Distinguishable subcritical and critical 
fission chain kinetics provides 
additional modality for zero-power 
reactor monitoring
• Could be extended to low-power 

reactor regimes
• Potentially small modular and 

microreactor designs

• Accurate estimates of ⍺ could also 
sense material defects and changes
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MTV Impact
• Work with Dr. Oskari Pakari, postdoc in 

our group, to connect with EPFL and 
CROCUS facility
• LANL NEN-2

• Measurement of MUSIC Benchmark for 
fission chain kinetic analyses

• Mentors: Jesson Hutchinson, Dr. Geordie 
McKenzie, Dr. Robert Weldon

• Continuing collaboration on MUSIC as 
Graduate Research Assistant (Intern)

• Development of ⍺ calculation code-
base with EPFL and NEN-2
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Conclusion
• Precise subcritical estimates of the prompt neutron decay constant, ⍺ 
• Allow for confirmation of reactor subcritical state

• Without temporal analysis, could be 
mistaken for reactor at low power

• Sensitivity to ⍺ in subcritical and 
critical zero- and low-power 
regimes provides ability to

• Monitor facility activity
• Detect material defects in 

steady state operation
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Next Steps

• Present continued CROCUS 
analysis at 2024 ANS PHYSOR 
(April 21-24)
• Replicated measured Cohn-⍺ 

response in simulation 
(MCNP/SERPENT)
• Apply Cohn-⍺ to MUSIC 

benchmark measurements
• Explore low-power regime and 

limits of measurements of ⍺
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Additional Slides
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Critical prompt neutron decay constant, 𝛼, estimates
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Results: Cross power spectral density (CPSD), 
SE2/SN2
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Results: Cross power spectral density (CPSD), 
SE2/SN2

Water level 
(mm)

rho 
($)^

alpha 
(s^(-1))

alpha_unc 
(s^(-1))

800 -1.4 333.01 1.98
850 -0.9 264.52 1.13
900 -0.5 213.63 0.67

960* 0 152.05 0.28
* = critical water level
^ = Serpent 2 values
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• Fine time resolution ( < 1 nanosecond )
• Organic scintillators are dual particle sensitive
• Can detect photons.  and neutrons simultaneously 

from fission events
• Quantify the ratio of prompt and delayed light 

output
• 𝑅 = !"#$%&'"()

!"#$
= )*+!
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Data Analysis: Organic Scintillators
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Alpha Estimates from Previous Fission Chamber 
and CeBr3


