

Event Topological Reconstruction using an Opaque Water-based Liquid Scintillator

2024 MTV Workshop

March 26th

Andrew Wilhelm

PhD student, University of Michigan Igor Jovanovic, University of Michigan

Reconstructing Event Topology in Scintillators

Apparatus

Response of scintillation liquids to gamma-rays from ¹³⁷Cs, ⁶⁰Co, and ²²Na

X-axis units are total photoelectrons across all channels

oWbLS2 produces the highest integrated signal

Comparison of lightconfinement by oWbLS1-3 for gamma-rays from ⁶⁰Co

oWbLS2 shows the most light-confinement

Summed pulse integrals (p.e.)

Fiber-coupled pulsed laser allows for injection of light at known location and intensity

Photoelectrons/pulse in each channel used to tune optical parameters of Geant4 simulation

- Reduced scattering length: 5.7 mm
- Absorption length: 169 mm
- X²/NDF for all pulses: 0.6 ± 0.2

22

21

Ζ

Comparison of experimental and simulated oWbLS2 response to gamma-rays from ¹³⁷Cs, ⁶⁰Co, and ²²Na

*X*²/NDF:

- ¹³⁷Cs: 1.45
- ⁶⁰Co: 1.13
- ²²Na: 1.23

CoM Calculations

Reconstruction of event vertex using corrected CoM method

Mean reconstruction error

Counts

- Small pulses (10000 ± 1000 photons/pulse):
 7.4 mm
- Large pulses (20000 ± 2000 photons/pulse):
 4.4 mm

Distance from center of detector (mm)

Relevance and Impact

- Wide range of applications relevant to the NNSA mission
 - Muon scattering tomography for fuel cask monitoring
 - Dual-particle (neutron and gamma-ray) imaging for treaty verification, SNM detection, and radiological terror prevention
 - Compact, surface-level monitoring of reactor anti-neutrinos for nonproliferation
- Collaborations
 - Penn State University (Garrett Wendel and Doug Cowen)
 - Brookhaven National Laboratory (Minfang Yeh and Richard Rosero)
 - LiquidO Consortium (international group including members from France, the UK, Spain, Italy, Japan, and more)
- Potential future collaborations
 - Oak Ridge National Laboratory / Air Force Institute of Technology: opaque plastics
 - West Point / DTRA: Opaque dual-particle imaging prototype

Conclusion and Future Work

Reconstruction of topology for point-like events

Direct optical characterization

Geometry and readout optimization

Novel materials

Reconstruction via machine learning

Acknowledgements

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920

Backup slides

MAPMT Calibration

Light Yield Measurement

Material	LY (ph/MeV)	% LAB
LAB+PPO	10000+/-2000	100
NoWASH20	9000+/-2000	90
oWbLS 1 (LSL)	11000+/-2000	110
oWbLS 2 (SSL)	12000+/-2000	120
oWbLS 3 (SSL)	12000+/-2000	120

Energy resolution

Mean energy resolution across all positions
Small pulses (10000 ± 1000 photons/pulse): 49 ± 3%
Large pulses (20000 ± 2000 photons/pulse): 30 ± 2%

60

80

100

Total signal (p.e.)

120

Small pulses

- Large pulses

Light yield: 12000 ± 2000 photons / MeV Small pulses ~ 0.8 MeV Large pulses ~ 1.6 MeV

Counts

600

500

400

300

200

100

'n

20

40

