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Introduction and Motivation

• Monitoring fission chain kinetics is vital to 
nuclear nonproliferation

• Estimate prompt neutron decay constant (⍺)
• The rate prompt neutrons in a chain-reacting 

system change
• Methodology determines ⍺ at or near delayed 

critical

• Can use ⍺ to monitor fissile systems to infer 
the multiplication factor keff

• Organic scintillators have been validated for 
fast assemblies
• Previous methods used are Rossi-⍺

MTV, fission chain
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Introduction and Motivation

• Systems with saturated count rates 
complicate analysis
• High-multiplying systems overwhelm 

electronics
• Rossi-⍺ shows discontinuities when 

estimating ⍺

• Creates motivation to apply Cohn-⍺ 
methodology to similar data
• Continue validation using organic 

scintillators for neutron noise analysis
• Validate Cohn-⍺ method using fast 

bare systems of uranium
F. Darby, et. al. INMM & ESARDA 2023
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Mission Relevance

• Neutron Noise analysis can be used to:
• Monitor fissile systems such as nuclear reactors
• Improve criticality safety standards
• Contribute to benchmarks

• Reactor monitoring verifies reactor start-up or 
shutdown
• “implement international safeguards 

obligations and detect and deter diversion of 
nuclear material or illicit use of nuclear 
facilities ”

• Previous work by our group validates the 
method for thermal systems

Darby, et. al. https://doi.org/10.1109/TNS.2023.3337657



5

Technical Approach

• Data was acquired through collaboration 
with Los Alamos National Laboratory (LANL)

• Data comes from a series of measurements 
of a fast bare uranium system
• Measurement of Uranium Subcritical and Critical 

(MUSiC)

• Led by LANL’s NEN-2 group at NCERC

• Subcritical and critical benchmark

• Variable mass of HEU (93% 235U)

• Uranium geometry is stackable half hemi-shells
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Technical Approach

• Was done on the PLANET critical assembly 
platform

• Measured with organic scintillator array (OSCAR)
• 3 x 4, 5.08 cm × 5.08 cm diameter trans-stilbene 

organic scintillator array

• Isolate neutron time-series data using pulse 
shape discrimination
• Organic scintillators are dual particle-sensitive
• Quantify the ratio of prompt and delayed light output

• 𝑅 =
tail

total
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Results

• Configurations 8 and 9 were analyzed
• These data are all subcritical

• 2 subcritical cases per configuration

• ⍺ can be plotted as a function of the 
inverse count rate
• Can extrapolate to 0 to estimate ⍺ at delayed 

critical

• This method assumes accurate count rates 

• Can compare directly to simulation

Configuration 8 ⍺  
[1/s]

Configuration 9 ⍺ 
[1/s]

−6.512 × 105 −8.766 × 105

-9.31 cents

-15.96 cents

⍺ Extrapolation to Delayed Critical Configuration 8
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Expected Impact

• Successful estimations of ⍺ using 
Cohn-⍺ avoid discontinuities seen 
in Rossi-⍺
• Specifically, with highly multiplying 

systems

• Contribution to benchmark 
validation of MUSiC
• Use ⍺ as benchmark value

• Further validates use of organic 
scintillators for fast bare systems
• Alternative to He-3 detector
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MTV Impact

• Working directly with staff scientists at 
LANL
• Validating research during weekly check-ins
• Continuation of work into a summer 

internship at LANL

• NEN-2 contacts assisting in research
• Mentored by Alex McSpaden from NEN-2
• Guidance from Jesson Hutchinson, George 

McKenzie, and Rene Sanchez

• Apply Cohn-⍺ to different datasets and 
standardize the algorithm in 
collaboration with LANL. 
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Conclusion

• Current estimations can be compared with detailed simulations

• ⍺ can be estimated in simulation as a benchmark value
• Compare to measured values using methods such as Cohn-⍺

• ⍺ can be used to monitor thermal and fast fissile systems for 
verification of startup and shutdown
• This method may be applied to next-generation fast modular reactors



12

Next Steps

• Explore additional methods for 
Cohn-⍺ uncertainty
• Efficiently estimate measurement 

uncertainty and compare

• Compare delayed critical estimate to 
simulation

• Continue research with LANL to 
analyze other datasets
• Improve the algorithm and compare 

results of varying material
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