

Detector Mechanisms for a Portable Neutron Resonance Transmission Analysis System

2024 MTV Workshop

March 27th

Shayaan Subzwari

MS student, MIT

Areg Danagoulian¹, J. Rahon¹, E. Klein¹, B. McDonald²

¹MIT, ²PNNL

Thorium Fuel Cycle Safeguards

May include...

- Heterogeneous nuclear materials with different isotopes present
- Indistinguishable passive signatures
- High gamma backgrounds

A detection mechanism that is...

- Applicable for range of isotopes and fuel forms
- Active
- Portable and non-destructive
- Accurate even in high gamma backgrounds?

ornl.gov 2011

Neutron Resonance Transmission Analysis (NRTA)

- Neutron attenuation through sample – resonance analysis
- Previously limited to large-scale facilities
- Can be performed alongside neutron resonance capture analysis (NRCA)

PNNL: NRTA for Th Safeguards

- Collaboration with PNNL
- Testing on isotopic samples
 - ²³³UO₂
 - ²³²Th + HEU

McDonald 2022, PNNL

Background Signal - GS20

• Background =

 GS20 sensitive to gammas, no signal differentiation

DEPOSITED ENERGY [ADC]

High Gamma Background Detection Difficulties

- Effective for ²³³Th
- ²³³U: Pb shielding for gammas, which results in...
 - Greater noise
 - Blurring of neutron resonance
 - Requires longer
 measurement times

Detection amid High Gamma Backgrounds

- Analysis of other detection mechanisms
- ¹⁰B-coated straws
 - Gas ionization detector
 - Effective n-gamma discrimination
 - Can provide position information
- Packed into bundles

8

B-coated straws Ongoing/Future Work

- Means of increasing efficiency
- Arrays of straws, TOF calculated at each column
 - ~15 bundles to achieve equivalent GS20 efficiency
- Novel geometries
- MCNP simulations for modeling efficiency and signal response

Applications and Impact

- Range of applications, directly connected to NNSA mission
 - Safeguards technologies for fuel cycle materials
 - Increasingly important for complex novel fuel cycles, such as Th
 - Critical to global nonproliferation concerns, arms control applications
- Impact of MTV on development
 - Collaboration with PNNL
 - Use of PNNL's range of resources and materials
 - Plan for continued cooperation and experimentation

10

Acknowledgements

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920

Works Cited

Ashley, S., Parks, G., Nuttall, W. et al. Thorium fuel has risks. Nature 492, 31–33 (2012). https://doi.org/10.1038/492031a

McDonald, B., et al. New NDA Methods for Thorium Fuel Cycle Safeguards; Mid-Project Report. PNNL (2022).

Klein, E., Neutron Resonance Transmission Analysis of Nuclear Material Using a Portable D-T Neutron Generator. *MIT* (2023).

J. L. Lacy et al., "Pie-Shaped boron-coated straws with enhanced neutron sensitivity," 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 2016, pp. 1-3, doi: 10.1109/NSSMIC.2016.8069783.

Additional Slides

²³³U vs ²³²Th gamma background counts

Additional Slides

Detection efficiencies comparison

B-coated straw orientation

