

Pushing the Bounds of

Minimal-Access Robotic Inspections

with Privacy-Preserving Absence Confirmation

2024 MTV Workshop

March 27

Eric Lepowsky

PhD Candidate (5th Year), Princeton University

Advisor: Alex Glaser (Program on Science and Global Security)

Collaborators: David Snyder, Ani Majumdar (Intelligent Robot Motion Lab)

Introduction & Motivation

Future agreements are likely to require new verification approaches which preserve aspects of onsite inspections while resolving some concerns about intrusiveness

Previously demonstrated the N-SpecDir Bot for single-shot directional determination, source localization, and template matching

with Rob Goldston, PPPL

Mission Relevance

NNSA Mission

Support the implementation of agreements and associated monitoring regimes to verifiably reduce nuclear weapons and programs

Develop strategies to address emerging nonproliferation and arms control challenges and opportunities

Our Contribution

We develop and demonstrate a new remote and autonomous solution for arms control verification

Theoretical guarantees on the privacy and correctness of this approach

Empirically validated by extensive simulated and hardware experiments

Problem Formulation

Assume that a physical, bounded environment is declared (by the host) to contain no radioactive sources

Explore the 2D obstacle-filled space to verify the declaration (or indicate presence, non-compliance)

Minimal sensory input and retention of any observable features (imagery, dimensions, radiation measurements, even the layout)

Exploration & Encoding Algorithm

Absence → robot moves according to a "reference" random walk

Presence → robot moves according to an "out-of-distribution" random walk

Only store the step size between measurements (sufficiently lossy, non-unique filter)

Detect the policy shift by Kolmogorov-Smirnov (KS) testing of the realized action distribution

Algorithm 1 Random walk absence confirmation.

```
Input: Estimated background B, Outer dimensions l_x, l_y
Confidence parameter p^*, Run time T, Test count n,
Threshold level z, Step size constants 0 \le c_L < c_U,
Reference distribution V_r
Output: Inspection result
Initialize P-value p = 1.0, Time step t = 1, Realized
action distribution \overline{V}_e = \{\emptyset\}, Starting pose x_0, y_0, \theta_0
while t \leq T do
  N_t \sim h(x_t, y_t; E)
                                       {Field measurement}
  c \leftarrow c_L + (c_U - c_L) \mathbb{1}[N_t \le B + z\sqrt{B}] {Set max step}
  ds, d\theta \sim \mathcal{U}[0, c], \mathcal{U}[0, 2\pi]
                                    {Step length, rotation}
  Rotate by d\theta rad. and move forward ds distance
  Append ds to memory V_e
  if t \equiv 0 \pmod{T/n} then
                                           {Perform KS test}
     p = \min\{p, \mathbf{KS}(V_e, V_r)\}
  end if
  if p \leq p^*/n then
     return 1
                                {Result: Anomaly detected}
  end if
end while
                               {Result: Absence confirmed}
return 0
```


Provable Privacy

All source-free maps result in the exact same action distribution

$$\mathcal{MI}(\{\mathcal{G}_t \setminus \mathcal{G}_{t-1}\}, \mathbb{M}^-) = 0 \ \forall t \ge 1$$

Cannot distinguish between any pair of source-free (compliant) maps using the information encoding & storage scheme

Guaranteed Correctness

High-confidence distribution testing limit false-positives

High-probability environment coverage limit false-negatives

*assumes that sources are detectable if the robot is sufficiently close

10 x 10 m environments 3-second measurements, 10 cm/s travel speed

Simulated Demo

30 environments simulated in PyBullet Laboratory-based radiation measurement model 100 trials per map (50 absence, 50 presence) 99.5% confidence inspection result

"Anomaly detected"

KS test log significance reaches threshold log(P) = -5

"Absence confirmed"

Coverage is achieved (with high probability) without a significant KS test

Simulated Demo – Absence

Simulated Demo – Presence

Hardware Demo – Presence

Sensing-agnostic algorithm compatible with any robotic radiation detector

iRobot Create 3 robotic platform

- LND 7314 2in Pancake Geiger detector (×3)
 (same as Safecast bGeigie Nano)
 - Adafruit ESP32 Feather V2
- 2-inch Mirion/Canberra Nal scintillator
 (Model 802) & Osprey Digital MCA Tube Base
 - Raspberry Pi 4 Model B

Vicon V16 mo-cap cameras used for omniscient coverage tracking

Courtesy of Intelligent Robot Motion Lab

Hardware Demo

20 m²
Full-scale
KS test and
coverage

Expected Impact & MTV Impact

Highlights a trade-off between permissible information and inspection efficiency & efficacy

By considering an exceedingly strict information constraint, we hope to contribute to a dialogue on what may be possible in the future

Opportunity to "field-test" our approach at 2023 International Conference on Robotics and Automation (ICRA) Workshop on Bridging the Lab-to-Real Gap

Prior work (**N-SpecDir Bot**) with Rob Goldston, PPPL

Conclusions & Next Steps

Applying robotics to radiation detection from an information theoretic perspective

Demonstrated the plausibility of a minimal-information verification task with provable-privacy and calibrated-correctness

If verification remains possible even in the limit of no observational information, what else is possible?

Continued interest in exploring "minimal access" approaches for verification

Acknowledgements

Hardware Demo

Nal detector binning provides 2.54-times faster coverage

Geiger counters require 3.33-times more steps to reach KS test threshold

Advantageous to use higher efficiency detectors

