

Oskar Searfus^{1,2}, Colton Graham¹, Shaun Clarke¹, Sara Pozzi¹, Igor Jovanovic¹

PhD Student, University of Michigan Dept. of Nuclear Engineering and Radiological Sciences ¹University of Michigan Dept. of Nuclear Engineering and Radiological Sciences, ²Sandia National Laboratories

Introduction and Motivation

- Active interrogation can be used to detect shielded SNM and other nuclear material. Neutron generator is often used as the interrogating source.
- Knowledge of absolute neutron output of a neutron generator is essential to predict reaction rates and validate simulations.
- Measurements can be subject to assumptions that are challenging to verify.
- Activating a LaBr₃ detector could simplify flux measurement because reactions of interest have high thresholds, the detector constrains its own β emissions, and activation products have relatively short half-lives.

Mission Relevance

- Reduce uncertainties of nuclear analytical techniques that use neutron generators.
- Improve the capacity to detect and prevent illicit or unintended transfers of SNM.
- Support system development by better understanding of shielding and other regulatory requirements.

Technical Approach

Half-lives, cross sections, and thresholds for fast and thermal reactions of naturally occurring in a LaBr₃ detector were examined. The ⁷⁹Br(n,2n)⁷⁸Br was selected to determine the fast flux.

Measurement of D-T Neutron Source Flux by Self-Neutron Activation Analysis with a LaBr₃ Detector Caryanne Wilson

- The face of the detector was placed 20 cm from the target plane of the neutron generator and irradiated for 30 minutes to reach saturation activity.
- Decay of activation products was measured after the generator was shut off.

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **DOE-NNSA award number DE-NA0003920**

Thermal Reactions	Half-life
⁷⁹ Br(n,g) ⁸⁰ Br	17.68 min
⁸¹ Br(n,g) ⁸² Br	35.28 h
¹³⁹ La(n,g) ¹⁴⁰ La	1.67 d

Q (MeV)	Cross Section (b)	Half-life
-10.6	0.9	6.45 min
0.631	0.03	3.26 x10 ⁵ y
-10.1	1.02	17.68 min
-0.8	0.02	18.45 min
-8.7	1.46	10 ¹¹ y
-1.5	0.003	83 min

Preliminary estimate:

• approximate the spectrum (100–2000 keV) to originate from ⁷⁸Br + ⁸⁰Br decay. • fit initial activities and half-lives

	Forced Parameters	Unspecified Parameters	Percent Difference
q)	6075.60 ± 27.55	5918.11 ± 164.80	2.66 ± 2.90
3)	6.45 min	4.78 ± 0.08	34.94 ± 2.28
q)	3315.66 ± 32.45	3517.85 ± 211.47	5.75 ± 5.74
))	17.68 min	12.84 ± 0.47	37.69 ± 5.04
df	1.09	1.03	

 Calculate flux and source strength from the fitted initial activity of ⁷⁸Br.

$$\phi = \frac{A_{78}(t=0)}{N_{79}\sigma(1 - e^{-\lambda_{78}t_a})}$$

S = $4\pi\phi r^2$

 $S = 6.44 \ge 10^8 \pm 0.01 \ge 10^8 \text{ n/s}$

xpected Impact

• Generator characterization may become more routine if a simple and robust method is made available for applications.

MTV Impact

• MTV has allowed me to collaborate with Paul Hausladen and Jason Nattress at Oak Ridge National Laboratory to develop methods to verify results.

Conclusion

• Decay of ⁷⁸Br produced from the the ⁷⁹Br(n,2n) reaction is present in the spectrum plotted in the time domain. The neutron production rate reconstructed from preliminary estimate is ~6 x greater than the rated generator output Detailed analysis of activation needs to be carried out, and alternative method method of measurement should be used for comparison.

Next Steps

 Reduce scattering in measurement Monte Carlo simulation of activation is underway \rightarrow properly account for various activation and decay reactions, and for flux attenuation in the detector.

• Measure neutron generator output using organic scintillators for comparison with the activation method.

