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• Active interrogation can be used to detect 
shielded SNM and other nuclear material. 
Neutron generator is often used as the 
interrogating source.

• Knowledge of absolute neutron output of a 
neutron generator is essential to predict 
reaction rates and validate simulations.

• Measurements can be subject to 
assumptions that are challenging to verify.

• Activating a LaBr3 detector could simplify 
flux measurement because reactions of 
interest have high thresholds, the detector 
constrains its own β emissions, and 
activation products have relatively short 
half-lives.

Introduction and Motivation

Mission Relevance
• Reduce uncertainties of nuclear analytical 

techniques that use neutron generators.
• Improve the capacity to detect and prevent 

illicit or unintended transfers of SNM.
• Support system development by better 

understanding of shielding and other 
regulatory requirements.

Technical Approach

• The face of the detector was 
placed 20 cm from the target plane 
of the neutron generator and 
irradiated for 30 minutes to reach 
saturation activity.

• Decay of activation products was 
measured after  the generator was 
shut off.

MTV Impact

Conclusion

Next Steps
• Reduce scattering in measurement
• Monte Carlo simulation of activation is 

underway à properly account for various 
activation and decay reactions, and for 
flux attenuation in the detector.

• Measure neutron generator output using 
organic scintillators for comparison with 
the activation method.

Results
Preliminary estimate:
• approximate the spectrum (100–2000 

keV) to originate from 78Br + 80Br decay.
• fit initial activities and half-lives

• Calculate flux and source strength from 
the fitted initial activity of 78Br.

Expected Impact
• Generator characterization may become more 

routine if a simple and robust method is made 
available for applications.

Thermal Reactions Half-life

79Br(n,g)80Br 17.68 min
81Br(n,g)82Br 35.28 h

139La(n,g)140La 1.67 d

Fast Reactions Q (MeV) Cross Section (b) Half-life
79Br(n,2n)78Br -10.6 0.9 6.45 min
79Br(n,p)79Se 0.631 0.03 3.26 x105 y
81Br(n,2n)80Br -10.1 1.02 17.68 min
81Br(n,p)81Se -0.8 0.02 18.45 min

139La(n,2n)138La -8.7 1.46 1011 y

139La(n,p)139Ba -1.5 0.003 83 min
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• MTV has allowed me to collaborate with 
Paul Hausladen and Jason Nattress at Oak 
Ridge National Laboratory to develop 
methods to verify results.

• Decay of 78Br produced from the the 
79Br(n,2n) reaction is present in the 
spectrum plotted in the time domain.

• The neutron production rate reconstructed 
from preliminary estimate is ~6 x greater 
than the rated generator output

• Detailed analysis of activation needs to be 
carried out, and alternative method 
method of measurement should be used 
for comparison.

• Half-lives, cross sections, and thresholds for fast 
and thermal reactions of naturally occurring in a 
LaBr3 detector were examined. The 79Br(n,2n)78Br 
was selected to determine the fast flux.

Measurement

𝑆 = 6.44	x	108 ± 0.01	x	108	n/s

Decay profile after irradiation

LaBr3
Target 
Plane

Energy spectrum after irradiation

Forced Parameters Unspecified Parameters Percent 
Difference

A78 (Bq) 6075.60 ± 27.55 5918.11 ± 164.80 2.66 ± 2.90

t1/2(78) 6.45 min 4.78 ± 0.08 34.94 ± 2.28

A80 (Bq) 3315.66 ± 32.45 3517.85 ± 211.47 5.75 ± 5.74

t1/2(80) 17.68 min 12.84 ± 0.47 37.69 ± 5.04

𝜒$/Ndf 1.09 1.03


