

Introduction and Motivation

- Water-based Cherenkov detectors with Gd doping are one of the promising technologies for practical remote monitoring of nuclear reactors.
- Gamma-ray calibration sources with high energy points (>5 MeV) are required for these detectors.
- The (α, n) reaction on ¹³C target can be utilized to produce an excited state of ¹⁶O, emitting a 6.13 MeV gamma ray.

$$\begin{split} E_{\alpha} < 5.12 \; MeV : \quad {}^{4}_{2}He + {}^{13}_{6}C \to {}^{16}_{8}O + {}^{1}_{0}n \\ Q = 2.22 \; MeV \end{split}$$

 $E_{\alpha} > 5.12 MeV: {}^{4}_{2}He + {}^{13}_{6}C \rightarrow {}^{16}_{8}O + {}^{1}_{0}n + \gamma (6.13 MeV)$ $Q = -3.91 \, MeV$

To avoid unnecessary shielding, a switchable source with two components (source and target) has been designed.

Mission Relevance

- Calibration of antineutrino detectors for monitoring nuclear reactors, contributing to the NNSA's nuclear nonproliferation mission.
- Easy deployment (no shielding in transport) for calibration of gamma and neutron detectors used in other NNSA applications

Development of a High-Energy Two-Component Gamma Calibration Source Junwoo Bae

Postdoc, University of Michigan

C. Graham¹, K. Ogren², S. Dazeley³, I. Jovanovic¹ ²Los Alamos National Laboratory, ³Lawrence Livermore National Laboratory

The gamma ray count rate is elevated in the 3–5 MeV region.

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **DOE-NNSA** award number **DE-NA0003920**

- Two source components: ¹³C: deposited on Cu substrate using _ plasma enhanced chemical vapor deposition (Collab with Penn State Univ.) ²⁴¹Am: electrodeposition on Ag substrate (collab with Univ. of Cincinnati)
 - Nal(TI) ²⁴¹Am
 - Detector setup and prepared ²⁴¹Am and ¹³C deposited layers
 - neutron > 1.4 MeV6.13 MeV gamma
- Estimated neutron and gamma ray production rate — Background — Background 60nCi Am-241+C-13 60nCi Am-241+C-13 10⁻³ 500 1000 1500 2000 2500 3000 3500 4000 Light output [a.u.] Time coincidence applied

- Gamma ray spectra from NaI(TI)

Expected Impact

The developed source can be used for the calibration of detectors that utilize gamma rays of O(10 MeV), such as water-based Cherenkov detectors, and for neutron active interrogation.

MTV Impact

• We work with LLNL and the UK/US BUTTON collaboration to establish the required source size, gamma-ray production rate, practical actuators, and future deployment in the **BUTTON** experiment (Boulby, UK).

Conclusion

Calculations and measurements of neutron and gamma-ray production for thin layers of ¹³C and ²⁴¹Am were performed.

Both the neutron count rate and the gammaray spectrum show promising differences from the background level.

Next Steps

Prepare a higher activity source and obtain statistically significant spectral difference. • Test the controllability using an actuator

