

Introduction and Motivation

- Comparing a simulated (MCNP) model of H2DPI system against experimental resul
- Verify and validate the simulation

Mission Relevance

- Supports the NNSA in the mission of nonproliferation – Global Material Secur
- Accurate, validated simulations are used
- Generate training data for AI programs
- Better the understanding of scatter-ba imaging systems

H2DPI (Dual Particle Image

- $12 6 \times 6 \times 50 \text{ mm}^3$ organic glass scintillators
- 8 6 mm (diameter) x 6 mm (length) CeBr₃ inorganic scintillators

Compactly measures the spectrum of an images incoming neutrons and gamma ra

²⁵²Cf was measured and simulated at both +20 azimuth (Figure 1)

Figure 1: Measurement position for -20 (a) and +20 (b)

Validation of Neutron Simulation Framework for Scintillator-based Imaging Systems Katie Ballard Fourth Year Undergrad, University of Michigan Ricardo Lopez, Oskari Pakari, Shaun Clarke, Sara Pozzi Department of Nuclear Engineering and Radiological Sciences, University of Michigan

Results

f the lts	 Time broadening was implement in the simulation post processing Smoothed out the E_{TOF} uncerta Curve (Figure 2)
rity	 Reduced the ratio of values between the simulation and experiment from 3.06 to 2.87
d to s ased	 Z position broadening was implemented in the simulation processing
ger)	 Further reduced the ratio down 2.72 Simulation reconstructed neutron response spectra comparison magnitude improved (Figure 3)
d	Reconstructed Neutron S 10 ⁰ 10 ⁰ MCNP PoliMi MCNP PoliMi
<section-header></section-header>	10^{-1} 10^{-1} 10^{-2} 10^{-3} 10^{-3} 10^{-4}

Figure 3: Comparison of the reconstructed neutron spectra for experimental and simulated data without and with time and Z position broadening.

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **DOE-NNSA award number DE-NA0003920**

Expected Impact

Efficient data generation for future radiation imager design improvements

Validated experiment allows for

confident generation of training data for Al models

Ability to further evaluate performance of the system for a range of applications

MTV Impact

The MTV fellowship enabled me to do this research

This work supports the NNSA Global Material Security Branch in the verification of nuclear material

Conclusion

Time and Z position broadening were implemented to further improve the accuracy of the simulation

This work supports the NNSA Global Material Security Branch in the verification of nuclear material using scatter-based imaging

Next Steps

Introduce equivalent PSD sampling response in the simulation data Implement broadening for the simulation light outputs to better match light output observed in experiment

