


Introduction and Motivation

- Ultrafast laser-induced plasma spectroscopy (LIBS) can be used as an active interrogation technique for remote detection in nuclear applications (SNM, environmental sensing).
- Laser filamentation leads to a dramatic improvement in range, and opens the door for waveguiding and fog clearing effects.
- Real environmental conditions can affect target exciting capabilities and signal collection capabilities.

$n_2 I = \frac{\omega_p^2}{2\omega^2} + \frac{1.22\lambda_0^2}{8\pi n_0 w_0^2}$	target ablation
ionization/ self-focus plasma formation self-focus input laser pulse	
I cm	
Laser	Laser filament in air. The fluorescence shows an ex high peak power.

Time scale	Gas dynamics effect
~10 ns	Plasma recombination
~100 ns	Pressure wave (fog expelling)
~1 µs	Pressure equilibrium
~1 ms	Thermal equilibrium

Induced gas hydrodynamics induces the cloud clearing mechanism.

structures \rightarrow Waveguiding.

Characterizing filament-induced breakdown spectroscopy through highly scattering media Leandro Frigerio

Ph.D. Student, University of Michigan Milos Burger¹, Kyle Latty², Kyle Hartig², Igor Jovanovic¹ ¹Department of Nuclear Engineering and Radiological Sciences, University of Michigan. ²Nuclear Engineering Program, Department of Materials Science and Engineering, University of Florida

produced filament \rightarrow Antiwaveguiding

- conditions.
- Networking Laboratory partners.
- Florida.
- PNNL and LANL.
- Laser applications.

- Experiments understand shattering.

Expected Impact

• If successful, we expect to better understand the underlying mechanisms involved in the use of ultrafast laser for LIBS in complex environmental

MTV Impact

connections & National with • Collaboration with MTV partners at University of

Interest from National laboratory ventures: LBNL,

• Strong interest from DTRA.

Conclusion

filamentation provide localized can transmission improvement that might help signal collection through highly scattering media in LIBS

 Anti-waveguiding effect deteriorates the ability to retrieve the plasma emission. It seems to be anti-correlated with cloud density.

Next Steps

 Studying Gauss-Laguerre beams for optical guiding effects through optical probing.

aiming modelling and to mechanisms of tog clearing, separating the effects of drop expelling and

