

Introduction and Motivation

- Manual location of radiation sources in the field can be dangerous and inefficient.
- Autonomous devices with radiation detectors, such as ground-based robots or unmanned aerial vehicles, can solve both issues.
- Independent of platform, faster localization may be possible with algorithms to optimize navigation.
- Multi-source scenarios are difficult to navigate via previous methods due to local extrema, but Sequential Particle Filtering overcomes this.

Mission Relevance

- Improved response to radiological incidents
- Verification and monitoring of locations and strengths of radioactive sources for material management and recovery
- Improved background characterization by driving focus to areas of increased radioactivity

Technical Approach

- Multiple subroutines consisting of Monte Carlo localization algorithms, regression algorithms, and unsupervised clustering algorithms
- Greedy algorithm type chosen to sequentially locate multiple radioactive sources
- Tested with simulated radiation counts with a fixed number of sources with randomized coordinates
- Developed in Python using libraries such as NumPy, SciPy, and scikit-learn

Sequential Particle Filter Localization Algorithm for Locating Radioactive Sources Abhishek P. Dahad Sophomore, University of Michigan Christopher C. Davis, Kimberlee J. Kearfott University of Michigan

▲ Algorithm control flow

▲ Two-source drone pathing with $1/\sqrt{x}$ step function

Function used for calculating step size for the drone:	Error in terms of sum of distance between prediction and actual source: (in arbitrary units)	Distance covered by the drone from start of algorithm to end: (in arbitrary units)	Number of steps:
Cube Root $f(x) = \frac{1}{\sqrt[3]{x}}$	0.0751	17.9	92
Square Root $f(x) = \frac{1}{\sqrt{x}}$	0.000150	18.0	59
$\log_{10} f(x) = \frac{1}{\log_{10} x}$	0.383	12.7	19
Identity Function $f(x) = \frac{1}{x}$	1.52	10.4	193

▲ Step-size performance

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **DOE-NNSA award number DE-NA0003920**

1.	Particle Filter $(\mathcal{X}_{t-1}, u_t, z_t)$:
2.	$\overline{\mathcal{X}_t} = \mathcal{X}_t = \emptyset$
3.	for n to N :
4.	sample $x_t^{[n]} \sim p(x_t \mid u_t, \; x_{t-1}^{[n]})$
5.	$w_t^{[n]} = p(z_t \mid x_t^{[n]})$
6.	$\overline{\mathcal{X}_t} = \overline{\mathcal{X}_t} + \left\langle x_t^{[n]}, \ w_t^{[n]} ight angle$
7.	end
8.	for n to N :
9.	draw i with probability $\propto w_t^{[i]}$
10.	add $x_t^{[i]}$ to \mathcal{X}_t
11.	end
12.	return \mathcal{X}_t

▲ Particle filter pseudocode

Expected Impact

- algorithmic problem solving

- steps taken

Next Steps

- speed
- Validating through experimentation
- Account for attenuating obstacles

 More rapid method of locating radioactive materials for radiological emergency response • Need for direct human participation in manual surveys and searches potentially eliminated Additional tool for materials management and comprehensive background characterization

MTV Impact

 Practical introduction of students to robotics and Undergraduate experience preparing and delivering scientific presentations Possible undergraduate journal publication

Conclusion

 Multiple source localization introduces a different type of paradigm from single source localization • Locating singular sources in a multiple source situation can be done with noise resistant methods • Square root function chosen for step size calculations as it offered the best accuracy for the least number of

• Expand weighting function criterion to reduce redundant movements and increase localization

Consider radiation detector and platform limitations

