

- enrichment of gaseous UF_6 .
- spectral fitting for this purpose.

$$I(\lambda) = \frac{H\omega^2}{4[(\lambda - \lambda_0)^2] - \omega^2} + C_0$$

The Effect of Laser Pulse Width on the Behavior of UF₆ Plasma in LISA-UE Londrea Garrett 4th Year Ph.D. Student, University of Michigan

Igor Jovanovic¹, George C.-Y. Chan² ¹University of Michigan, ²Lawrence Berkeley National Laboratory

This work was funded in-part by the Consortium for Monitoring, Technology, and Verification under **DOE-NNSA** award number **DE-NA0003920**.

search was performed under appointment to the Nuclear Nonproliferation International Safeguards Fellowship Program sponsored by the Department of Energy, National Nuclear Security Administration's Office of International Nuclear Safeguards (NA-241).

Impact and Relevance

- Improved understanding of UF₆ plasma behavior enables the optimization of future
- LISA-UE could greatly decrease the time
- required for enrichment facility inspection
- Improve global capabilities for ²³⁵U monitoring
- Work has been performed in collaboration
- with Lawrence Berkeley National Laboratory

Conclusion and Future Work

- The UI 646.49 nm continues to show promise for enrichment measurements. However, self absorption may limit accuracy.
- Future work will compare measurements performed with excitation sources of varying
- A measurement correction factor and model are under development:
 - Absorption coefficient: $\alpha(\lambda) = \pi r_0 \lambda^2 f_{ij} n_0 P(\lambda) (1 - e^{-hc/\lambda kT})$
 - Voigt profile line shape:

$$L) = \int_{-\infty}^{\infty} G(\lambda) * L(\lambda - \lambda') d\lambda'$$

National Nuclear Security Administration